[1]
Nosrati, H.; Salehiabar, M.; Manjili, H.K.; Danafar, H.; Davaran, S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int. J. Biol. Macromol., 2018, 108, 909-915.
[2]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Danafar, H.; Manjili, H.K. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44, 886-894.
[3]
Wang, N.; Wu, Y.; Bian, J.; Qian, X.; Lin, H.; Sun, H.; You, Q.; Zhang, X. Current development of ROS-modulating agents as novel antitumor therapy. Curr. Cancer Drug Targets, 2017, 17, 122-136.
[4]
Morgan, G.; Ward, R.; Barton, M. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin. Oncol. J., 2004, 16, 549-560.
[5]
Luciano, R.; Battafarano, G.; Saracino, R.; Rossi, M.; Perrotta, A.; Manco, M.; Muraca, M.; Fattore, A.D. New perspectives in glioblastoma: Nanoparticles-based approaches. Curr. Cancer Drug Targets, 2017, 17, 203-220.
[6]
Giri, T.K.; Mukherjee, P.; Barman, T.K.; Maity, S. Nano-encapsulation of capsaicin on lipid vesicle and evaluation of their hepatocellular protective effect. Int. J. Biol. Macromol., 2016, 88, 236-243.
[7]
Giri, T.K.; Alexander, A. Ajazuddin, Barman, T.K.; Maity, S. Infringement of the barriers of cancer via dietary phytoconstituents capsaicin through novel drug delivery system. Curr. Drug Deliv., 2016, 13, 27-39.
[8]
Darvesh, A.S.; Bishayee, A. Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer. Nutr. Cancer, 2013, 65, 329-344.
[9]
Zhang, W.; Shu, W.O.; Li, H.; Yang, G.; Cai, H.; Ji, B.T.; Gao, J.; Gao, Y.T.; Zheng, W.; Xiang, Y.B. Vitamin intake and liver cancer risk. J. Natl. Cancer Inst., 2012, 104, 1174-1182.
[10]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2, 270-278.
[11]
Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z.U. The aflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr., 2001, 313, 2248-2251.
[12]
Sethi, G.; Sung, B.; Aggarwal, B.B. The role of curcumin in modern medicine. In: Herbal Drugs: Ethnomedicine to modern medi226. Curr. Pharm. Biotechnol., 2012, 13, 218-228.
[13]
Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: a global perspective. Pharmacol. Ther., 2003, 99, 1-13.
[14]
Agarwal, S.; Amin, K.S.; Jagadeesh, S.; Baishay, G.; Rao, P.G.; Barua, N.C. Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol. Cancer, 2013, 12, 99.
[15]
Fang, M.; Chen, D.; Yang, C.S. Dietary polyphenols may affect DNA methylation. J. Nutr., 2007, 137, 223S-228S.
[16]
Paluszczak, J.; Krajka-Kuzniak, V.; Baer-Dubowska, W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol. Lett., 2010, 192, 119-125.
[17]
Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; Scherer, B.; Sinclair, D.A. Smallmolecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003, 425, 191-196.
[18]
Beaver, L.M.; Yu, T.W.; Sokolowski, E.I.; Williams, D.E.; Dashwood, R.H.; Ho, E. 3, 3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol. Appl. Pharmacol., 2012, 263, 345-351.
[19]
Bosviel, R.; Durif, J.; Dechelotte, P.; Bignon, Y.J.; Bernard-Gallon, D. Epigenetic modulation of BRCA1 and BRCA2 gene expression by equol in breast cancer cell lines. Br. J. Nutr., 2012, 108, 1187-1193.
[20]
Balasubramanyam, K.; Swaminathan, V.; Ranganathan, A.; Kundu, T.K. Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem., 2003, 278, 19134-19140.
[21]
Lee, W.J.; Zhu, B.T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis, 2006, 27, 269-277.
[22]
Balasubramanyam, K.; Varier, R.A.; Altaf, M.; Swaminathan, V.; Siddappa, N.B.; Ranga, U.; Kundu, T.K. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferasedependent chromatin transcription. J. Biol. Chem., 2004, 279, 51163-51171.
[23]
Lee, W.J.; Zhu, B.T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid two common catechol-containing coffee polyphenols. Carcinogenesis, 2006, 27, 269-277.
[24]
Cui, Y.; Lu, C.; Kang, A.; Liu, L.; Tan, S.; Sun, D.; Hu, J.; Ma, X. Nordihydroguaiaretic acid restores expression of silenced E-cadherin gene in human breast cancer cell lines and xenografts. Anticancer Drugs, 2008, 19, 487-494.
[25]
Oh, J.I.; Chun, K.H.; Joo, S.H.; Oh, Y.T.; Lee, S.K. Caspase-3-dependent protein kinase C delta activity is required for the progression of Ginsenoside-Rh2-induced apoptosis in SK-HEP-1 cells. Cancer Lett., 2005, 230, 228-238.
[26]
Zhang, C.; Liu, L.; Yu, Y.; Chen, B.; Tang, C.; Li, X. Antitumor effects of ginsenoside Rg3 on human hepatocellular carcinoma cells. Mol. Med. Rep., 2012, 5, 1295-1298.
[27]
Jiang, J.W.; Chen, X.M.; Chen, X.H.; Zheng, S.S. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J. Gastroenterol., 2011, 17, 3605-3613.
[28]
Song, G.; Guo, S.; Wang, W.; Hu, C.; Mao, Y.; Zhang, B.; Zhang, H.; Hu, T. Intestinal metabolite compound K of ginseng saponin potently attenuates metastatic growth of hepatocellular carcinoma by augmenting apoptosis via a Bid-mediated mitochondrial pathway. J. Agric. Food Chem., 2010, 58, 12753-12760.
[29]
Ng, K.T.; Guo, D.Y.; Cheng, Q.; Geng, W.; Ling, C.C.; Li, C.X.; Liu, X.B.; Ma, Y.Y.; Lo, C.M.; Poon, R.T.; Fan, S.T.; Man, K. A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PloS One, 2012, 7, e31655.
[30]
Zhang, C.L.; Zeng, T.; Zhao, X.L.; Yu, L.H.; Zhu, Z.P.; Xie, K.Q. Protective effects of garlic oil on hepatocarcinoma induced by N-nitro sodiethyla mine in rats. Int. J. Biol. Sci., 2012, 8, 363-374.
[31]
Manach, C.; Scalbert, A.; Morand, C. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79, 727-747.
[32]
Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Jpn., 2017, 90, 967-1004.
[33]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[34]
Li, B.L.; Setyawati, M.I.; Chen, L.; Xie, J.; Ariga, K.; Lim, C.T.; Garaj, S.; Leong, D.T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces, 2017, 9, 15286-15296.
[35]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[36]
Bhattacharyya, K.; Mukherjee, S. Fluorescent metal nano-clusters as next generation fluorescent probes for cell imaging and drug delivery. Bull. Chem. Soc. Jpn., 2018, 91, 447-454.
[37]
Nomani, A.; Nosrati, H.; Manjili, H.K.; Khesalpour, L.; Danafar, H. Preparation and characterization of copolymeric polymersomes for protein delivery. Drug Res. (Stuttg.), 2017, 67(8), 458-465.
[38]
Nosrati, H.; Salehiabar, M.; Attari, E.; Davaran, S.; Danafar, H.; Manjili, H.K. Green and one‐pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem., 2018, 32, e4069.
[39]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Ramazani, A.; Manjili, H.K.; Danafar, H. New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res. Chem. Intermed., 2017, 43, 7423-7442.
[40]
Nosrati, H.; Rashidi, N.; Danafar, H.; Manjili, H.K. Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J. Inorg. Organomet. Polym., 2018, 28, 1178.
[41]
Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Manjili, K.H. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem., 2018, 76, 501-509.
[42]
Nosrati, H.; Adibtabar, M.; Sharafi, A.; Danafar, H.; Kheiri, H.M. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Drug Dev. Ind. Pharm., 2018, 23, 1-8.
[43]
Danafar, H.; Manjili, H.K.; Najafi, M. Study of copolymer composition on drug loading efficiency of enalapril in polymersomes and cytotoxicity of drug loaded nanoparticles. Drug Res. (Stuttg.), 2016, 66(9), 495-504.
[44]
Hu, J.; Sheng, Y.; Shi, J.; Yu, B.; Yu, Z.; Liao, G. Long circulating polymeric nanoparticles for gene/drug delivery. Curr. Drug Metab., 2018, 19(9), 723-738.
[46]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed, 2006, 1, 297-315.
[47]
Whiteside, T. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27, 5904-5912.
[48]
Lee, T.H.; Asti, E.D.; Magnus, N.; Al-Nedawi, K.; Meehan, B.; Rak, J. Microvesicles as mediators of intercellular communication in cancer-The emerging science of cellular ‘debris’. Semin. Immunopathol., 2011, 33, 455-467.
[49]
Wang, G.; Fu, X.L.; Wang, J.J.; Guan, R.; Tang, X.J. Novel strategies to discover effective drug targets in metabolic and immune therapy for glioblastoma. Curr. Cancer Drug Targets, 2016, 17, 17-39.
[50]
Erez, N.; Truitt, M.; Olson, P.; Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell, 2010, 17, 135-147.
[51]
Driskell, R.R.; Lichtenberger, B.M.; Hoste, E.; Kretzschmar, K.; Simons, B.D.; Charalambous, M.; Ferron, S.R.; Herault, Y.; Pavlovic, G.; Ferguson-Smith, A.C.; Watt, F.M. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 2013, 504, 277-281.
[52]
Tassone, E.; Valacca, C.; Mignatti, P. Membrane‐type 1 matrix metalloproteinase downregulates fibroblast growth factor‐2 binding to the cell surface and intracellular signaling. J. Cell. Physiol., 2015, 230, 366-377.
[53]
Selvan, S.R.; Dowling, J.P.; Kelly, W.K.; Lin, J. Indoleamine 2, 3-dioxygenase (IDO): Biology and target in cancer immunotherapies. Curr. Cancer Drug Targets, 2016, 16, 755-764.
[54]
Yamashita, M.; Ogawa, T.; Zhang, X.; Hanamura, N.; Kashikura, Y.; Takamura, M.; Yoneda, M.; Shiraishi, T. Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer, 2012, 19, 170-176.
[55]
Porsch, H.; Mehić, M.; Olofsson, B.; Heldin, P.; Heldin, C.H. Platelet-derived growth factor β-receptor, transforming growth factor β type I receptor, and CD44 protein modulate each other’s signaling and stability. J. Biol. Chem., 2014, 289, 19747-19757.
[56]
Cirri, P.; Chiarugi, P. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev., 2012, 31, 195-208.
[57]
Muggen, A.F.; Singh, S.P.; Hendriks, R.W.; Langerak, A.W. Targeting signaling pathways in chronic lymphocytic leukemia. Curr. Cancer Drug Targets, 2016, 16, 669-688.
[58]
Fullár, A.; Kovalszky, I.; Bitsche, M.; Romani, A.; Schartinger, V.H.; Sprinzl, G.M.; Riechelmann, H.; Dudás, J. Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. Exp. Cell Res., 2012, 318, 1517-1527.
[59]
Kerkar, S.P.; Restifo, N.P. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res., 2012, 72, 3125-3130.
[60]
Vermeulen, L.; Melo, F.S.; Richel, D.J.; Medema, J.P. The developing cancer stem-cell model: Clinical challenges and opportunities. Lancet Oncol., 2012, 13, e83-e89.
[61]
Magee, J.A.; Piskounova, E.; Morrison, S.J. Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell, 2012, 21, 283-296.
[62]
Ohga, N.; Ishikawa, S.; Maishi, N.; Akiyama, K.; Hida, Y.; Kawamoto, T.; Sadamoto, Y.; Osawa, T.; Yamamoto, K.; Kondoh, M.; Ohmura, H.; Shinohara, N.; Nonomura, K.; Shindoh, M.; Hida, K. Heterogeneity of tumor endothelial cells: Comparison between tumor endothelial cells isolated from high- and low-metastatic tumors. Am. J. Pathol., 2012, 180, 1294-1307.
[63]
Swartz, M.A.; Fleury, M.E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng., 2007, 9, 229-256.
[64]
Padera, T.P.; Stoll, B.R.; Tooredman, J.B.; Capen, D.; Tomaso, E.; Jain, R.K. Pathology: Cancer cells compress intratumour vessels. Nature, 2004, 427, 695.
[65]
van Sluis, R.; Bhujwalla, Z.M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdán, S.; Galons, J.P.; Gillies, R.J. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med., 1999, 41, 743-750.
[66]
Heinrich, E.L.; Walser, T.C.; Krysan, K.; Liclican, E.L.; Grant, J.L.; Rodriguez, N.L.; Dubinett, S.M. The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. Cancer Microenviron., 2012, 5, 5-18.
[67]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26, 57-64.
[68]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11, 812-818.
[69]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153, 198-205.
[70]
Gullotti, E.; Yeo, Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol. Pharm., 2009, 6, 1041-1051.
[71]
Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation inmalignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res., 1994, 54, 987-992.
[72]
Northfelt, D.W.; Martin, F.J.; Working, P.; Volberding, P.A.; Russell, J.; Newman, M.; Amantea, M.A.; Kaplan, L.D. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: Pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J. Clin. Pharmacol., 1996, 36, 55-63.
[73]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53, 283-318.
[74]
Barbé, C.; Bartlett, J.; Kong, L.; Finnie, L.; Lin, H.Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Silica particles: A novel drug-delivery system. Adv. Mater., 2004, 16, 1-8.
[75]
Li, Y.; Pei, Y.; Zhang, X.; Gu, Z.; Zhou, Z.; Yuan, W.; Zhou, J.; Zhu, J.; Gao, X. PEGylated PLGA nanoparticles as protein carriers: Synthesis, preparation and biodistribution in rats. J. Control. Release, 2001, 71, 203-211.
[76]
Owens, D.E.; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307, 93-102.
[77]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14, 1310-1316.
[78]
Daniels, T.R.; Delgado, T.; Helguera, G.; Penichet, M.L. The transferrin receptor part II: Targeted delivery of therapeutic agents into cancer cells. Clin. Immunol., 2006, 121, 159-176.
[79]
Minko, T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv. Drug Deliv. Rev., 2004, 56, 491-509.
[80]
Lurje, G.; Lenz, H.J. EGFR signaling and drug discovery. Oncology, 2009, 77, 400-410.
[81]
Matsumura, Y.; Gotoh, M.; Muro, K.; Yamada, Y.; Shirao, K.; Shimada, Y.; Okuwa, M.; Matsumoto, S.; Miyata, Y.; Ohkura, H.; Chin, K.; Baba, S.; Yamao, T.; Kannami, A.; Takamatsu, Y.; Ito, K.; Takahashi, K. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol., 2004, 15, 517-525.
[82]
Gosk, S.; Moos, T.; Gottstein, C.; Bendas, G. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim. Biophys. Acta, 2008, 1778, 854-863.
[83]
Pastorino, F.; Brignole, C.; Marimpietri, D.; Cilli, M.; Gambini, C.; Ribatti, D.; Longhi, R.; Allen, T.M.; Corti, A.; Ponzoni, M. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res., 2003, 63, 7400-7409.
[84]
Kondo, M.; Asai, T.; Katanasaka, Y.; Sadzuka, Y.; Tsukada, H.; Ogino, K.; Taki, T.; Baba, K.; Oku, N. Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int. J. Cancer, 2004, 108, 301-306.
[85]
Xiong, X.B.; Huang, Y.; Lu, W.L.; Zhang, X.; Zhang, H.; Nagai, T.; Zhang, Q. Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo. J. Pharm. Sci., 2005, 94, 1782-1793.
[86]
Park, J.W.; Hong, K.; Kirpotin, D.B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Moore, D.; Papahadjopoulos, D.; Benz, C.C. Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clin. Cancer Res., 2002, 8, 1172-1181.
[87]
Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66, 6732-6740.
[88]
Mamot, C.; Drummond, D.C.; Noble, C.O.; Kallab, V.; Guo, Z.; Hong, K.; Kirpotin, D.B.; Park, J.W. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res., 2005, 65, 11631-11638.
[89]
Eliaz, R.E.; Nir, S.; Marty, C.; Szoka, F.C. Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res., 2004, 64, 711-718.
[90]
Gabizon, A.; Horowitz, A.T.; Goren, D.; Tzemach, D.; Shmeeda, H.; Zalipsky, S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin. Cancer Res., 2003, 9, 6551-6559.
[91]
Krieger, M.L.; Eckstein, N.; Schneider, V.; Koch, M.; Royer, H.D.; Jaehde, U.; Bendas, G. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int. J. Pharm., 2010, 389, 10-17.
[92]
Bangham, A.D.; Standish, M.M.; Weissmann, G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J. Mol. Biol., 1965, 13, 253-259.
[93]
Sessa, G.; Weissmann, G. Phospholipid spherules (liposomes) as a model for biological membranes. J. Lipid Res., 1968, 9, 310-318.
[94]
Giri, T.K.; Giri, A.; Barman, T.K.; Maity, S. Nanoliposome is a promising carrier of protein and peptide biomolecule for the treatment of cancer. Anticancer. Agents Med. Chem., 2016, 16, 816-831.
[95]
Simões, S.; Moreira, J.N.; Fonseca, C.; Düzgüneş, N.; de Lima, M.C. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev., 2004, 56, 947-965.
[96]
Carvalho-Júnior, A.D.; Vieira, F.P.; Melo, V.J.M.; Lopes, M.T.P.; Silveira, J.N.; Ramaldes, G.A.; Garnier-Suillerot, A.; Pereira-Maia, E.C.; Oliveira, M.C. Preparation and cytotoxicity of cisplatin loaded liposomes. Braz. J. Med. Biol. Res., 2007, 40, 1149-1157.
[97]
Batista, C.M.; Carvalho, C.M.B.; Magalhães, N.S.S. Lipossomas e suas aplicações terapêuticas: Estado da arte. Braz. J. Pharm. Sci., 2007, 43, 167-179.
[98]
Harrison, M.; Tomlinson, D.; Stewart, S. Liposomal-entrapped doxorubicin: an active agent in AIDS-related Kaposi’s sarcoma. J. Clin. Oncol., 1995, 13, 914-920.
[99]
Wang, S.; Noh, S.K.; Koo, S.I. Green tea catechins inhibit pancreatic phospholipase A(2) and intestinal absorption of lipids in ovariectomized rats. J. Nutr. Biochem., 2006, 17, 492-498.
[100]
Basu, A.; Lucas, E.A. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev., 2007, 65, 361-375.
[101]
Proniuk, S.; Liederer, B.M.; Blanchard, J. Preformulation study of epigallocatechin gallate, a promising antioxidant for topical skin cancer prevention. J. Pharm. Sci., 2002, 91, 111-116.
[102]
de Pace, R.C.; Liu, X.; Sun, M.; Nie, S.; Zhang, J.; Cai, Q.; Gao, W.; Pan, X.; Fan, Z.; Wang, S. Anticancer activities of (−) - epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J. Liposome Res., 2013, 23, 187-196.
[103]
Bischoff, S.C. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11, 733-740.
[104]
Kumari, A.; Kumar, V.; Yadav, S.K. Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: A green approach. PLoS One, 2012, 7, e41230.
[105]
Wang, G.; Wang, J.J.; Yang, G.Y.; Du, S.M.; Zeng, N.; Li, D.S.; Li, R.M.; Chen, J.Y.; Feng, J.B.; Yuan, S.H.; Ye, F. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int. J. Nanomed, 2012, 7, 271-280.
[106]
Wang, G.; Wang, J.J.; Chen, X.L.; Du, S.M.; Li, D.S.; Pei, Z.J.; Lan, H.; Wu, L.B. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis., 2013, 4, e746.
[107]
Hu, J.; Wang, J.; Wang, G.; Yao, Z.; Dang, X. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int. J. Mol. Med., 2016, 37, 690-702.
[108]
Wang, X.C.; Hou, S.X.; Li, W.; Li, X.Y.; Zhou, Y.W. Study on drug release in vitro and rat intestinal absorption of resveratrol nanoliposomes. Zhongguo. Zhong. Yao. Za. Zhi., 2007, 32, 1084-1088.
[109]
Mohan, A.; Narayanan, S.; Sethuraman, S.; Krishnan, U.M. Novel resveratrol and 5-Fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. Biomed Res. Int., 2014, 2014, 424239.
[110]
Shishodia, S.; Sethi, G.; Aggarwal, B.B. Curcumin: Getting back to the roots. Ann. N. Y. Acad. Sci., 2005, 1056, 206-217.
[111]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23, 363-398.
[112]
Sharma, R.A.; Steward, W.P.; Gescher, A.J. Pharmacokinetics and pharmacodynamics of curcumin. Adv. Exp. Med. Biol., 2007, 595, 453-470.
[113]
Rahman, S.; Cao, S.; Steadman, K.J.; Wei, M.; Parekh, H.S. Native and beta-cyclodextrin-enclosed curcumin: Entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug Deliv., 2012, 19, 346-353.
[114]
Thangapazham, R.L.; Puri, A.; Tele, S.; Blumenthal, R.; Maheshwari, R.K. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int. J. Oncol., 2008, 32, 1119-112.
[115]
Narayanan, N.K.; Nargi, D.; Randolph, C.; Narayanan, B.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer, 2009, 125, 1-8.
[116]
Esfahan, M.K.M.; Alavi, S.E.; Akbarzadeh, A.; Ghassemi, S.; Saffari, Z.; Farahnak, M.; Chiani, M. Pegylation of nanoliposomal paclitaxel enhances its efficacy in breast cancer. Trop. J. Pharm. Res., 2014, 13, 1195-1198.
[117]
Zhang, J.A.; Anyarambhatla, G.; Ma, L.; Ugwu, S.; Xuan, T.; Sardone, T.; Ahmad, I. Development and characterisation of a novel Cremophor EL free liposome based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm., 2005, 59, 177-187.
[118]
Strieth, S.; Eichhirn, M.E.; Werner, A.; Sauer, B.; Teifeil, M.; Michaelis, U.; Berghaus, A.; Dellian, M. Paclitaxel encapsulated in cationic liposomes increases tumor microvessel leakiness and improves therapeutic efficacy in combination with cisplatin. Clin. Cancer Res., 2008, 14, 4603-4611.
[119]
Nie, S.; Hsiao, W.L.; Pan, W.; Yang, Z. Thermoreversible Pluronic F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: In vitro drug release, cell cytotoxicity, and uptake studies. Int. J. Nanomed, 2011, 6, 151-166.
[120]
Biswas, S.; Dodwadkar, N.S.; Deshpande, P.P.; Torchilin, V.P. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control. Release, 2012, 159, 393-402.
[121]
Patel, N.R.; Rathi, A.; Mongayt, D.; Torchilin, V.P. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int. J. Pharm., 2011, 416, 296-299.
[122]
Huang, Y.; Chen, X.M.; Zhao, B.X.; Ke, X.Y.; Zhao, B.J.; Zhao, X.; Wang, Y.; Zhang, X.; Zhang, Q. Antiangiogenic activity of sterically stabilized liposomes containing paclitaxel (SSL-PTX): In vitro and in vivo. AAPS PharmSciTech, 2010, 11, 752-759.
[123]
Du, R.; Zhong, T.; Zhang, W.Q.; Song, P.; Song, W.D.; Zhao, Y.; Wang, C.; Tang, Y.Q.; Zhang, X.; Zhang, Q. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int. J. Nanomed, 2014, 9, 3091-3105.
[124]
Liu, G.X.; Fang, G.Q.; Xu, W. Dual targeting biomimetic liposomes for paclitaxel/DNA combination cancer treatment. Int. J. Mol. Sci., 2014, 15, 15287-15303.
[125]
Hu, L.; Liang, G.; Yuliang, W.; Bingjing, Z.; Xiangdong, Z.; Rufu, X. Assessing the effectiveness and safety of liposomal paclitaxel in combination with cisplatin as first-line chemotherapy for patients with advanced NSCLC with regional lymph-node metastasis: Study protocol for a randomized controlled trial (PLC-GC trial). Trials, 2013, 14, 45.
[126]
Kan, P.; Tsao, C.W.; Wang, A.J.; Su, W.C.; Liang, H.F. A liposomal formulation able to incorporate a high content of paclitaxel and exert promising anticancer effect. J. Drug Deliv., 2011, 2011, 629234.
[127]
Stathopoulos, G.P.; Antoniou, D.; Dimitroulis, J.; Michalopoulou, P.; Bastas, A.; Marosis, K.; Stathopoulos, J.; Provata, A.; Yiamboudakis, P.; Veldekis, D.; Lolis, N.; Georgatou, N.; Toubis, M.; Pappas, C.H.; Tsoukalas, G. Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: A randomized phase III multicenter trial. Ann. Oncol., 2010, 22, 2227-2232.
[128]
Gibbs, D.D.; Pyle, L.; Allen, M.; Vaughan, M.; Webb, A.; Johnston, S.R.; Gore, M.E. A phase I dose-finding study of a combination of pegylated liposomal doxorubicin (Doxil), carboplatin and paclitaxel in ovarian cancer. Br. J. Cancer, 2002, 86, 1379-1384.
[129]
Gao, M.; Xu, Y.; Qiu, L. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. Int. J. Nanomed, 2015, 10, 6615-6632.
[130]
Bafaloukos, D.; Papadimitriou, C.; Linardou, H.; Aravantinos, G.; Papakostas, P.; Skarlos, D.; Kosmidis, P.; Fountzilas, G.; Gogas, H.; Kalofonos, C.; Dimopoulos, A.M. Combination of pegylated liposomal doxorubicin (PLD) and paclitaxel in patients with advanced soft tissue sarcoma: a phase II study of the Hellenic Cooperative Oncology Group. Br. J. Cancer, 2004, 91, 1639-1644.
[131]
Mayer, L.D.; Bally, M.B.; Loughrey, H.; Masin, D.; Cullis, P.R. Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 and P388 tumors. Cancer Res., 1990, 50, 575-579.
[132]
Mayer, L.D.; Nayar, R.; Thies, R.L.; Boman, N.L.; Cullis, P.R.; Bally, M.B. Identification of vesicle properties that enhance the antitumour activity of liposomal vincristine against murine L1210 leukemia. Cancer Chemother. Pharmacol., 1993, 33, 17-24.
[133]
Sapra, P.; Moase, E.H.; Ma, J.; Allen, T.M. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab’ fragments. Clin. Cancer Res., 2004, 10, 1100-1111.
[134]
Sapra, P.; Allen, T.M. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin. Cancer Res., 2004, 10, 2530-2537.
[135]
Rodriguez, M.A.; Pytlik, R.; Kozak, T.; Chhanabhai, M.; Gascoyne, R.; Lu, B.; Deitcher, S.R.; Winter, J.N. Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer, 2009, 115, 3475-3482.
[136]
Park, J.W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res., 2002, 4, 95-99.
[137]
Hong, R.L. Liposmal anti-cancer drug researches the myth of long circulation. J. Chinese. Oncol. Soc., 2004, 20, 10-21.
[138]
Takeuchi, H.; Kojima, H.; Toyoda, T.; Yamamoto, H.; Hino, T.; Kawashima, Y. Prolonged circulation time of doxorubicin-loaded liposomes coated with amodified polyvinyl alcohol after intravenous injection in rats. Eur. J. Pharm. Biopharm., 1999, 48, 123-129.
[139]
Li, X.; Ding, L.; Xu, Y.; Wang, Y.; Ping, Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferring. Int. J. Pharm., 2009, 373, 116-123.
[140]
Song, C.K.; Jung, S.H.; Kim, D.D.; Jeong, K.S.; Shin, B.C.; Seong, H. Disaccharide-modified liposomes and their in vitro intracellular uptake. Int. J. Pharm., 2009, 380, 161-169.
[141]
Gaillard, P.J.; Appeldoorn, C.C.M.; Dorland, R.; Kregten, J.; Manca, F.; Vugts, D.J.; Windhorst, B.; Guus, D.A.M.S.; Vries, H.E.; Maussang, D.; Tellingen, O. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One, 2014, 9, e82331.
[142]
Moussa, M.; Goldberg, S.N.; Tasawwar, B.; Sawant, R.R.; Levchenko, T.; Kumar, G.; Torchilin, V.P.; Ahmed, M. Adjuvant liposomal doxorubicin markedly affects radiofrequency ablation-induced effects on periablational microvasculature. J. Vasc. Interv. Radiol., 2013, 24, 1021-1033.
[143]
Xing, M.; Yan, F.; Yu, S.; Shen, P. Efficacy and cardiotoxicity of liposomal doxorubicin-based chemotherapy in advanced breast cancer: A meta-analysis of ten randomized controlled trials. PLoS One, 2015, 10, e0133569.
[144]
Anders, C.K.; Adamo, B.; Karginova, O.; Deal, A.M.; Rawal, S.; Darr, D.; Schorzman, A.; Santos, C.; Bash, R.; Kafri, T.; Carey, L.; Miller, C.R.; Perou, C.M.; Sharpless, N.; Zamboni, W.C. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer. PLoS One, 2013, 8, e61359.
[145]
Staropoli, N.; Ciliberto, D.; Botta, C.; Fiorillo, L.; Grimaldi, A.; Lama, S.; Caraglia, M.; Salvino, A.; Tassone, P.; Tagliaferri, P. Pegylated liposomal doxorubicin in the management of ovarian cancer: A systematic review and metaanalysis of randomized trials. Cancer Biol. Ther., 2014, 15, 707-720.
[146]
Fan, Y.; Lin, N.M.; Luo, L.H.; Fang, L.; Huang, Z.Y.; Yu, H.F.; Wu, F.Q. Pharmacodynamic and pharmacokinetic study of pegylated liposomal doxorubicin combination (CCOP) chemotherapy in patients with peripheral T-cell lymphomas. Acta Pharmacol. Sin., 2011, 32, 408-414.
[147]
Gibson, J.M.; Alzghari, S.; Ahn, C.; Trantham, H.; La-Beck, N.M. The role of pegylated liposomal doxorubicin in ovarian cancer: A meta-analysis of randomized clinical trials. Oncologist, 2013, 18, 1022-1031.
[148]
Eckes, J.; Schmah, O.; Siebers, J.W.; Groh, U.; Zschiedrich, S.; Rautenberg, B.; Hasenburg, A.; Jansen, M.; Hug, M.J.; Winkler, K.; Pütz, G. Kinetic targeting of pegylated liposomal doxorubicin: a new approach to reduce toxicity during chemotherapy (CARL-trial). BMC Cancer, 2011, 11, 337.
[149]
Wu, S.K.; Chiang, C.F.; Hsu, Y.H.; Lin, T.H.; Liou, H.C.; Fu, W.M.; Lin, W.L. Short-time focused ultrasound hyperthermia enhances liposomal doxorubicin delivery and antitumor efficacy for brain metastasis of breast cancer. Int. J. Nanomed, 2014, 9, 4485-4494.
[150]
Chang, D.K.; Li, P.C.; Lu, R.M.; Jane, W.N.; Wu, H.C. Peptide-mediated liposomal Doxorubicin enhances drug delivery efficiency and therapeutic efficacy in animal models. PLoS One, 2013, 8, e83239.
[151]
Kaye, S.B.; Colombo, N.; Monk, B.J.; Tjulandin, S.; Kong, B.; Roy, M.; Chan, S.; Filipczyk-Cisarz, E.; Hagberg, H.; Vergote, I.; Lebedinsky, C.; Parekh, T.; Santabárbara, P.; Park, Y.C.; Nieto, A.; Poveda, A. Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer delays third-line chemotherapy and prolongs the platinum-free interval. Ann. Oncol., 2011, 22, 49-58.
[152]
Baselga, J.; Manikhas, A.; Cortés, J.; Llombart, A.; Roman, L.; Semiglazov, V.F.; Byakhov, M.; Lokanatha, D.; Forenza, S.; Goldfarb, R.H.; Matera, J.; Azarnia, N.; Hudis, C.A.; Rozencweig, M. Phase III trial of nonpegylated liposomal doxorubicin in combination with trastuzumab and paclitaxel in HER2-positive metastatic breast cancer. Ann. Oncol., 2014, 25, 592-598.
[153]
Al-Batran, S.E.; Güntner, M.; Pauligk, C.; Scholz, M.; Chen, R.; Beiss, B.; Stopatschinskaja, S.; Lerbs, W.; Harbeck, N.; Jäger, E. Anthracycline rechallenge using pegylated liposomal doxorubicin in patients with metastatic breast cancer: A pooled analysis using individual data from four prospective trials. Br. J. Cancer, 2010, 103, 1518-1523.
[154]
Little, R.F.; Aleman, K.; Kumar, P.; Wyvill, K.M.; Pluda, J.M.; Read-Connole, E.; Wang, V.; Pittaluga, S.; Catanzaro, A.T.; Steinberg, S.M.; Yarchoan, R. Phase 2 study of pegylated liposomal doxorubicin in combination with interleukin-12 for AIDS-related Kaposi sarcoma. Blood, 2007, 110, 4165-4171.
[155]
Forssen, E.A.; Coulter, D.M.; Proffitt, R.T. Selective in vivo localisation of daunorubicin small unilamellar vesicles in solid tumours. Cancer Res., 1992, 52, 3255-3261.
[156]
Lowis, S.; Lewis, I.; Elsworth, A.; Weston, C.; Doz, F.; Vassal, G.; Bellott, R.; Robert, J.; Pein, F.; Ablett, S.; Pinkerton, R.; Frappaz, D. A phase I study of intravenous liposomal daunorubicin (DaunoXome) in paediatric patients with relapsed or resistant solid tumours. Br. J. Cancer, 2006, 95, 571-580.
[157]
O’Byrne, K.J.; Thomas, A.L.; Sharma, R.A.; DeCatris, M.; Shields, F.; Beare, S.; Steward, W.P. A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br. J. Cancer, 2002, 87, 15-20.
[158]
Sano, K.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. The effect of photoimmunotherapy followed by liposomal daunorubicin in a mixed tumor model: A demonstration of the super-enhanced permeability and retention effect after photoimmunotherapy. Mol. Cancer Ther., 2014, 13, 426-432.
[159]
Feldman, E.J.; Lancet, J.E.; Kolitz, J.E.; Ritchie, E.K.; Roboz, G.J.; List, A.F.; Allen, S.L.; Asatiani, E.; Mayer, L.D.; Swenson, C.; Louie, A.C. First-in-man study of CPX-351: A liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J. Clin. Oncol., 2011, 29, 979-985.
[160]
Versluis, A.J.; Rensen, P.C.; Rump, E.T.; Van Berkel, T.J.; Bijsterbosch, M.K. Low-density lipoprotein receptor-mediated delivery of a lipophilic daunorubicin derivative to B16 tumours in mice using apolipoprotein E-enriched liposomes. Br. J. Cancer, 1998, 78, 1607-1614.
[161]
Hempel, G.; Reinhardt, D.; Creutzig, U.; Boos, J. Population pharmacokinetics of liposomal daunorubicin in children. Br. J. Clin. Pharmacol., 2003, 56, 370-377.
[162]
Li, X.T.; Ju, R.J.; Li, X.Y.; Zeng, F.; Shi, J.F.; Liu, L.; Zhang, C.X.; Sun, M.G.; Lou, J.N.; Lu, W.L. Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells. Oncotarget, 2014, 5, 6497-6511.