[1]
Kanfer, I.; Skinner, M.F.; Walker, R.B. Analysis of macrolide antibiotics. J. Chromatogr. A, 1998, 812, 255-286.
[2]
González de la Huebra, M.J.; Bordin, G.; Rodríguez, A.R. A multiresidue method for the simultaneous determination of ten macrolide antibiotics in human urine based on gradient elution liquid chromatography coupled to coulometric detection (HPLC-ECD). Anal. Chim. Acta, 2004, 517, 53-63.
[3]
Kees, F.; Spangler, S.; Wellenhofer, M. Determination of macrolides in biological matrices by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A, 1998, 812, 287-293.
[4]
Chen, K.Y.; Yang, T.C.; Chang, S.Y. Determination of macrolide antibiotics using dispersive liquid-liquid microextraction followed by surface-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2012, 23, 1157-1160.
[5]
Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000-2010: an analysis of national pharmaceutical sales data. Lancet Infect. Dis., 2014, 14, 742-750.
[7]
Senta, I.; Krizman-Matasic, I.; Terzic, S.; Ahel, M. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2017, 1509, 60-68.
[8]
Qi, M.; Wang, P.; Cong, R.; Yang, J. Simultaneous determination of roxithromycin and ambroxol hydrochloride in a new tablet formulation by liquid chromatography. J. Pharm. Biomed. Anal., 2004, 35, 1287-1291.
[9]
Yu, B.; Wang, X.; Yu, S.; Li, Q.; Zhou, Q. Effects of roxithromycin on ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in the rhizosphere of wheat. Appl. Microbiol. Biotechnol., 2014, 98, 263-272.
[10]
Bryskier, A. Roxithromycin: Review of its antimicrobial activity. J. Antimicrob. Chemother., 1998, 41, 1-21.
[11]
Norouzi, P.; Daneshgar, P.; Ganjali, M.R. Electrochemical evaluation of non-electroactive drug erythromycin in trace amount at biological samples by continuous cyclic voltammetry. Mater. Sci. Eng., 2009, 29, 1281-1287.
[12]
Ali, M.; Sherazi, S.T.H.; Mahesar, S.A. Quantification of erythromycin in pharmaceutical formulation by transmission Fourier transform infrared spectroscopy. Arab. J. Chem., 2014, 7, 1104-1109.
[13]
Avramov Ivic, M.L.; Petrović, S.D.; Mijin, D.Ž.; Vanmoos, F.; Radović, V.V. The electrochemical behavior of erythromycin A on a gold electrode. Electrochim. Acta, 2008, 54, 649-654.
[14]
Yang, Z.Y.; Wang, L.; Tang, X. Determination of azithromycin by ion-pair HPLC with UV detection. J. Pharm. Biomed. Anal., 2009, 49, 811-815.
[15]
Petropoulos, A.D.; Kouvela, E.C.; Starosta, A.L.; Wilson, D.N.; Kalpaxis, D.L. Time-resolved binding of azithromycin to escherichia coli ribosomes. J. Mol. Biol., 2009, 385, 1179-1192.
[16]
Shaikh, K.A.; Patil, S.D.; Devkhile, A.B. Development and validation of a reversed-phase HPLC method for simultaneous estimation of ambroxol hydrochloride and azithromycin in tablet dosage form. J. Pharm. Biomed. Anal., 2008, 48, 1481-1484.
[17]
Breier, A.R.; Garcia, C.V.; Oppe, T.P.; Steppe, M.; Schapoval, E.E.S. Microbiological assay for azithromycin in pharmaceutical formulations. J. Pharm. Biomed. Anal., 2002, 29, 957-961.
[18]
Mallah, M.A.; Sherazi, S.T.H.; Mahesar, S.A.; Rauf, A. Assessment of azithromycin in pharmaceutical formulation by Fourier-transform infrared (FT-IR) transmission spectroscopy. Pak. J. Anal. Environ. Chem., 2011, 12, 61-67.
[19]
Mallah, M.A.; Sherazi, S.T.H.; Mahesar, S.A.; Rauf, A. Development and validation of green method for estimation of clarithromycin in pharmaceutical formulation by transmission Fourier transform infrared spectroscopy. J. Chem. Soc. Pak., 2012, 34, 556-562.
[20]
Li, W.; Jia, H.; Zhao, K. Determination of clarithromycin in rat plasma by HPLC-UV method with pre-column derivatization. Talanta, 2007, 71, 385-390.
[21]
Ozkan, Y.; Dikmen, N.; Işimer, A. Clarithromycin targeting to lung: optimization of the size, morphology and release characteristics of albumin microspheres. Acta Pol. Pharm., 2000, 57, 375-380.
[22]
Chu, S-Y.; Sennello, L.T.; Sonders, R.C. Simultaneous determination of clarithromycin and 14(R)-hydroxyclarithromycin in plasma and urine using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B., 1991, 571, 199-208.
[23]
Pappa-Louisi, A.; Papageorgiou, A.; Zitrou, A.; Sotiropoulos, S.; Zougrou, F. Study on the electrochemical detection of the macrolide antibiotics clarithromycin and roxithromycin in reversed-phase high-performance liquid chromatography. J. Chromatogr. B, 2001, 755, 57-64.
[24]
Jiang, Y.; Wang, J.; Li, H.; Wang, Y.; Gu, J. Determination of clarithromycin in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal., 2007, 43, 1460-1464.
[25]
Wang, J.; Yang, Z.; Wang, X.; Yang, N. Capillary electrophoresis with gold nanoparticles enhanced electrochemiluminescence for the detection of roxithromycin. Talanta, 2008, 76, 85-90.
[26]
Sherazi, S.T.H.; Ali, M.; Mahesar, S.A. Application of Fourier-transform infrared (FT-IR) transmission spectroscopy for the estimation of roxithromycin in pharmaceutical formulation. Vib. Spectrosc., 2011, 55, 115-118.
[27]
Hang, T-J.; Zhang, M.; Song, M.; Shen, J-P.; Zhang, Y-D. Simultaneous determination and pharmacokinetic study of roxithromycin and ambroxol hydrochloride in human plasma by LC-MS/MS. Clin. Chim. Acta, 2007, 382, 20-24.
[28]
Selenke, W.M.; Leung, G.W.; Townley, R.G. Nonantibiotic effects of macrolide antibiotics of the oleandomycin-erythromycin group with special reference to their “steroid-sparing” effects. J. Allergy Clin. Immunol., 1980, 65, 454-464.
[29]
Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev., 2010, 23, 590-615.
[30]
Arsic, B.; Barber, J.; Čikoš, A.; Mladenovic, M.; Novak, P. 16-Membered macrolide antibiotics: A review. Int. J. Antimicrob. Agents, 2017, 51, 283-298.
[31]
Poletti, V.; Casoni, G.; Chilosi, M.; Zompatori, M. Diffuse panbronchi-olitis. Eur. Respir. J., 2006, 28, 862-871.
[33]
Hunter, R.P.; Lynch, M.J.; Erimn, J.P.; Mfllas, W.J.; Fletcher, A.M.; Ryan, N.L.; Olson, J.A. Pharmacokinetics, oral bioavailability and tissue distribution of azithromycin in cats. J. Vet. Phmacol. Therap., 1995, 18, 38-46.
[34]
Adeli, E. The use of spray freeze drying for dissolution and oral bioavailability improvement of azithromycin. Powder Technol., 2017, 319, 323-331.
[35]
Alvarez-Elcoro, M.D.S.; Mark, J.; Enzler, M.D. The Macrolides: Erythromycin, Clarithromycin, and Azithromycin, Symposium on Antimicrobial Agents-Part IX. Mayo Clin. Proc., 1999, 74, 613-634.
[36]
Gunjan, S.; Singh, S.K.; Chauhan, B.S.; Pandey, S.K.; Tripathi, R. Clarithromycin enhances the antimalarial efficacy of mefloquine via its increased bioavailability and disrupting P. falciparum apicoplast. Life Sci., 2015, 136, 126-132.
[37]
Biradar, S.V.; Patil, A.R.; Sudarsan, G.V.; Pokharka, V.B. A comparative study of approaches used to improve solubility of roxithromycin. Powder Technol., 2006, 169, 22-32.
[38]
Bernabeu, J.A.; Camacho, M.A.; Gil-Alegre, M.E.; Ruz, V.; Torres-Suárez, A.I. Microbiological bioassay of erythromycin thiocyanate: Optimisation and validation. J. Pharm. Biomed. Anal., 1999, 21, 347-353.
[39]
Andreotti, P.E.; Morse, I.S.; Hartmann, D.M. Microbioluminometry assay: Determination of erythromycin activity in plasma or serum. J. Pharm. Sci., 1989, 78, 979-985.
[40]
Tepe, J. JohnSt, C. Determination of erythromycin by ultraviolet spectrophotometry. Anal. Chem., 1955, 27, 744-746.
[41]
Amin, A.S.; Issa, Y.M. Selective spectrophotometric method for the determination of erythromycin and its esters in pharmaceutical formulations using gentiana violet. J. Pharm. Biomed. Anal., 1996, 14, 1625-1629.
[42]
Deubel, A.; Holzgrabe, U. Development of an enhanced separation of erythromycin and its related substances by liquid chromatography. J. Pharm. Biomed. Anal., 2007, 43, 493-498.
[43]
Wardrop, J.; Ficker, D.; Franklin, S.; Gorski, R.J. Determination of erythromycin and related substances in enteric coated tablet formulations by reversed phase Liquid chromatography. J. Pharm. Sci., 2000, 89, 1097-1105.
[44]
Van den Bossche, L.; Lodi, A.; Schaar, J.; Shaakov, S.; Adams, E. An interlaboratory study on the suitability of a gradient LC-UV method as a compendial method for the determination of erythromycin and its related substances. J. Pharm. Biomed. Anal., 2010, 53, 109-112.
[45]
Hassib, S.T.; Farag, A.E.; Elkady, E.F. Liquid chromatographic and spectrophotometric methods for the determination of erythromycin stearate and trimethoprim in tablets. Bulletin Faculty Pharm. Cairo Uni., 2011, 49, 81-89.
[46]
Xiao, W.; Chen, B.; Yao, S.; Cheng, Z. Simultaneous determination of erythromycin propionate and base in human plasma by high-performance liquid chromatography-electrospray mass spectrometry. J. Chromatogr. B, 2005, 817, 153-158.
[47]
Deubel, A.; Fandiño, A.S.; Sörgel, F.; Holzgrabe, U. Determination of erythromycin and related substances in commercial samples using liquid chromatography/ion trap mass spectrometry. J. Chromatogr. A, 2006, 1136, 39-47.
[48]
Yudi, L.M.; Baruzzi, A.M.; Solis, V. Quantitative determination of erythromycin and its hydrolysis products by cyclic voltammetry at the interface between water and 1,2-dichloroethane. J. Electroanal. Chem., 1993, 360, 211-219.
[49]
Wang, H.; Zhang, A.; Cui, H.; Liu, D.; Liu, R. Adsorptive stripping voltammetric determination of erythromycin at a pretreated glassy carbon electrode. Microchem. J., 2000, 64, 67-71.
[50]
Vajdle, O.; Guzsvány, V.; Škorić, D.; Anojčić, J.; Bobrowski, A. Voltammetric behavior of erythromycin ethylsuccinate at a renewable silver-amalgam film electrode and its determination in urine and in a pharmaceutical preparation. Electrochim. Acta, 2016, 191, 44-54.
[51]
Vajdle, O.; Guzsvány, V.; Škoric, D.; Csanádi, J.; Petkovic, M.; Avramov-Ivic, M.; Kónya, Z.; Petrovic, S.; Bobrowski, A. Voltammetric behavior and determination of the macrolide antibiotics azithromycin, clarithromycin and roxithromycin at a renewable silver - Amalgam film electrode. Electrochim. Acta, 2017, 229, 334-344.
[52]
Lalloo, A.K.; Kanfer, I. Determination of erythromycin and related substances by capillary electrophoresis. J. Chromatogr. B, 1997, 704, 343-350.
[53]
Ha, P.T.T.; Van Schepdael, A.; Roets, E.; Hoogmartens, J. Investigating the potential of erythromycin and derivatives as chiral selector in capillary electrophoresis. J. Pharm. Biomed. Anal., 2004, 34, 861-870.
[54]
Feng, Y-C.; Hu, C-Q. Construction of universal quantitative models for determination of roxithromycin and erythromycin ethylsuccinate in tablets from different manufacturers using near infrared reflectance spectroscopy. J. Pharm. Biomed. Anal., 2006, 41, 373-384.
[55]
Qu, N.; Li, X.; Dou, Y.; Mi, H.; Ren, Y. Nondestructive quantitative analysis of erythromycin ethylsuccinate powder drug via short-wave near-infrared spectroscopy combined with radial basis function neural networks. Eur. J. Pharm. Sci., 2007, 31, 156-164.
[56]
Wu, B.; Guo, Y.; Cao, H.; Zhang, Y.; Yu, L.; Jia, N. A novel mesoporous molecular sieves-based electrochemilumenescence sensor for sensitive detection of azithromycin. Sens. Actuat. B, 2013, 186, 219-225.
[57]
Suhagia, B.N.; Shah, S.A.; Rathod, I.S.; Patel, H.M.; Doshi, K.R. Determination of azithromycin in pharmaceutical dosage forms by spectrophotometric method. Indian J. Pharm. Sci., 2006, 68, 242-245.
[58]
De Paula, C.E.R.; Almeida, V.G.K.; Cassella, R.J. Novel spectrophotometric method for the determination of azithromycin in pharmaceutical formulations based on its charge transfer reaction with quinalizarin. J. Braz. Chem. Soc., 2010, 21, 1664-1671.
[59]
Jayanna, B.K.; Nagendrappa, G. Arunkumar; Gowda N. Spectrophotometric Estimation of Azithromycin in Tablets. Indian J. Pharm. Sci., 2012, 74, 365-367.
[60]
Sharmin, N.; Shanta, N.S.; Bachar, S.C. Spectrophotometric Analysis of azithromycin and its pharmaceutical dosage forms: Comparison between spectrophotometry and HPLC. Dhaka Univ. J. Pharm. Sci, 2013, 12, 171-179.
[61]
Omara, H.A.; Ahmed, H.A.; El-Mahdy, A.A.; Musbah, S.A. New spectrophotometric determination of azithromycin in pure and dosage forms using nbromosuccinimide and potassium permanganate as oxidants. World J. Pharm. Pharm. Sci., 2014, 3, 100-112.
[62]
Bhimani, S.; Sanghvi, G.; Pethani, T.; Dave, G.; Airao, V.; Sharma, T.; Sheth, N.; Vaishnav, D. Development of the UV spectrophotometric method of azithromycin in API and stress degradation studies. Int. Lett. Chem. Phys. Astron., 2016, 68, 48-53.
[63]
Rufino, J.L.; Pezza, H.R.; Pezza, L. Flow-injection spectrophotometric determination of azithromycin in pharmaceutical formulations using p-chloranil in the presence of hydrogen peroxide. Anal. Sci., 2008, 24, 871-876.
[64]
Nigovic, B.; Simunic, B. Voltammetric assay of azithromycin in pharmaceutical dosage forms. J. Pharm. Biomed. Anal., 2003, 32, 197-202.
[65]
Nigovic, B. Adsorptive stripping voltammetric determination of azithromycin at a glassy carbon electrode modified by electrochemical oxidation. Anal. Sci., 2004, 20, 639-643.
[66]
Farghaly, O.A.; Mohamed, N.A. Voltammetric determination of azithromycin at the carbon paste electrode. Talanta, 2004, 62, 531-538.
[67]
Araujo, J.; Oritz, R.; Velasquez, W.; Ortega, J.M. Determination of azithromycin in pharmaceutical formulations by differential pulse voltammetry. Comparison with Fourier transform infrared spectroscopic analysis. Port. Electrochem. Acta, 2006, 24, 71-81.
[68]
Palomeque, M.E.; Ortíz, P.I. New automatized method with amperometric, detection for the determination of azithromycin. Talanta, 2007, 72, 101-105.
[69]
Peng, J.Y.; Hou, C.T.; Liu, X.X.; Li, H.B.; Hu, X.Y. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode. Talanta, 2011, 86, 227-232.
[70]
Zhang, K.; Lu, L.; Wen, Y.; Xu, J.; Duan, X.; Zhang, L.; Hu, D.; Nie, T. Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of Azithromycin. Anal. Chim. Acta, 2013, 787, 50-56.
[71]
Ensafi, A.A.; Allafchian, A.R.; Rezaei, B. A sensitive and selective voltammetric sensor based on multiwall carbon nanotubes decorated with MgCr2O4 for the determination of azithromycin. Colloid. Surf. B., 2013, 103, 468-474.
[72]
Torano, J.S.; Guchelaar, H.J.; Sastre, J. Quantitative determination of the macrolide antibiotics erythromycin, roxithromycin, azithromycin and clarithromycin in human serum by high-performance liquid chromatography using pre-column derivatization with 9-fluorenylmethyloxycarbonyl chloride and fluorescence detection. J. Chromatogr. B, 1998, 720, 89-97.
[73]
Zubata, P.; Ceresole, R.; Rosasco, M.A.; Pizzorno, M.T. A new HPLC method for azithromycin quantitation. J. Pharm. Biomeical. Anal., 2002, 27, 833-836.
[74]
Bahrami, G.; Mirzae, S.; Kiani, A. High performance liquid chromatographic determination of azithromycin in serum using fluorescence detection and its application in human pharmacokinetic studies. J. Chromatogr. B, 2005, 820, 277-281.
[75]
Wilms, E.; Trumpie, H.; Veenendaal, W.; Touw, D. Quantitative determination of azithromycin in plasma, blood and isolated neutrophils by liquid chromatography using pre-column derivatization with 9-fluorenylmethyloxycarbonyl-chloride and fluorescence detection. J. Chromatogr. B, 2005, 814, 37-42.
[76]
Bahrami, G.; Mohammadi, B. A new on-line, in-tube pre-column derivatization technique for high performance liquid chromatographic determination of azithromycin in human serum. J. Chromatogr. B, 2006, 830, 355-358.
[77]
Zeng, A.; Liu, X.; Zhang, S.; Zheng, Y.; Huang, P.; Du, K.; Fu, Q. Determination of azithromycin in raw materials and pharmaceutical formulations by HPLC coupled with an evaporative light scattering detector. Asian J. Pharm. Sci., 2014, 9, 107-116.
[78]
Barrett, B.; Booek-Dohalsky, V.; Fejt, P.; Vaingatova, S.; Huclova, J.; Nimec, B.; Jelinek, I. Validated HPLC-MS-MS method for determination of azithromycin in human plasma. Anal. Bioanal. Chem., 2005, 383, 210-217.
[79]
Nirogi, R.V.S.; Kandikere, V.N.; Shukla, M.; Mudigonda, K.; Maurya, S.; Boosi, R.; Yerramilli, A. Sensitive and selective liquid chromatography-tandem mass spectrometry method for the quantification of azithromycin in human plasma. Anal. Chim. Acta, 2005, 553, 1-8.
[80]
Chen, B.M.; Liang, Y.Z.; Chen, X.; Liu, S.G.; Deng, F.L.; Zhou, P. Quantitative determination of azithromycin in human plasma by liquid chromatography-mass spectrometry and its application in a bioequivalence study. J. Pharm. Biomed. Anal., 2006, 42, 480-487.
[81]
Yuzuak, N.; Ozden, T.; Eren, S.; Toptan, S. Analysis of azithromycin in human plasma by LC-MS-MS. Chromatographia, 2007, 66, S115-S118.
[82]
Filist, M.; Buś-Kwaśnik, K.; Ksycińska, H.; Rudzki, P.J. Simplified LC-MS/MS method enabling the determination of azithromycin in human plasma after a low 100mg dose administration. J. Pharm. Biomed. Anal., 2014, 100, 184-189.
[83]
Boyer, C.; Gaudin, K.; Kauss, T.; Gaubert, A.; Boudis, A.; Verschelden, J.; Franc, M.; Roussille, J.; Boucher, J.; Olliaro, P.; White, N.J.; Millet, P.; Dubost, J-P. Development of NIRS method for quality control of drug combination artesunate-azithromycin for the treatment of severe malaria. J. Pharm. Biomed. Anal., 2012, 67-68, 10-15.
[84]
Robaina, N.F.; de Paula, C.E.R.; Brum, D.M.; de la Guardia, M.; Garrigues, S.; Cassella, R.J. Novel approach for the determination of azithromycin in pharmaceutical formulations by Fourier transform infrared spectroscopy in film-through transmission mode. Microchem. J., 2013, 110, 301-307.
[85]
Mahmoudi, A.; Fourar, R.E-A.; Boukhechem, M.S.; Zarkout, S. Microbiological assay for the analysis of certain macrolides in pharmaceutical dosage forms. Int. J. Pharm., 2015, 491, 285-291.
[86]
Jain, A.; Jain, A.; Jain, A. Sensitive polarographic electrochemical determination of clarithromycin in blood serum. J. Young Pharm., 2013, 5, 70-72.
[87]
Taninaka, C.; Ohtani, H.; Hanada, E.; Kotaki, H.; Sato, H.; Iga, T. Determination of erythromycin, clarithromycin, roxithromycin, and azithromycin in plasma by high-performance liquid chromatography with amperometric detection. J. Chromatogr. B, 2000, 738, 405-411.
[88]
Hedenmo, M.; Britt-Marie, E. Liquid chromatographic determination of the macrolide antibiotics roxithromycin and clarithromycin in plasma by automated solid-phase extraction and electrochemical detection. J. Chromatogr. A, 1995, 692, 161-166.
[89]
Wibawa, J.I.D.; Shaw, P.N.; Barrett, D.A. Quantification of clarithromycin, its 14-hydroxy and decladinose metabolites in rat plasma, gastric juice and gastric tissue using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B, 2003, 783, 359-366.
[90]
Niopas, I.; Daftsios, A.C. Determination of clarithromycin in human plasma by HPLC with electrochemical detection: validation and application in pharmacokinetic study. Biomed. Chromatogr., 2001, 15, 507-508.
[91]
Choi, S.J.; Kim, S.B.; Lee, H-Y.; Na, D.H.; Yoon, Y.S.; Lee, S.S.; Kim, J.H.; Lee, K.C.; Lee, H.S. Column-switching high-performance liquid chromatographic determination of clarithromycin in human plasma with electrochemical detection. Talanta, 2001, 54, 377-382.
[92]
Peng, X.; Wang, Z.; Li, J.; Le, G.; Shi, Y. Electrochemiluminescence detection of clarithromycin in biological fluids after capillary electrophoresis separation. Anal. Lett., 2008, 41, 1184-1199.
[93]
Amini, H.; Ahmadiani, A. Sensitive determination of clarithromycin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J. Chromatogr. B, 2005, 817, 193-197.
[94]
Bahrami, G.; Mohammadi, B. Determination of clarithromycin in human serum by high-performance liquid chromatography after pre-column derivatization with 9-fluorenylmethyl chloroformate: Application to a bioequivalence study. J. Chromatogr. B, 2007, 850, 417-422.
[95]
van Rooyen, G.F.; Smit, M.J.; de Jager, A.D.; Hundt, H.K.L.; Hundt, A.F. Sensitive liquid chromatography-tandem mass spectrometry method for the determination of clarithromycin in human plasma. J. Chromatogr. B, 2002, 768, 223-229.
[96]
Shin, J.; Pauly, D.; Johnsona, J.; Fryea, R. Simplified method for determination of clarithromycin in human plasma using protein precipitation in a 96-well format and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B, 2008, 871, 130-134.
[97]
de Velde, F.; Alffenaar, J.W.A.; Wessels, A.M.; Greijdanus, B.; Uges, D.R. Simultaneous determination of clarithromycin, rifampicin and their main metabolites in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B, 2009, 877, 1771-1777.
[98]
Oswald, S.; Peters, J.; Venner, M.; Siegmund, W. LC-MS/MS method for the simultaneous determination of clarithromycin, rifampicin and their main metabolites in horse plasma, epithelial lining fluid and broncho-alveolar cells. J. Pharm. Biomed. Anal., 2011, 55, 194-201.
[99]
Vu, D.H.; Koster, R.A.; Bolhuis, M.S.; Greijdanus, B.; Altena, R.V.; Nguyen, D.H.; Brouwers, J.R.B.J.; Uges, D.R.A.; Alffenaar, J.W.C. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS. Talanta, 2014, 121, 9-17.
[100]
Lotfy, H.M.; Hagazy, M.A-M. Comparative study of novel spectrophotometric methods manipulating ratio spectra: An application on pharmaceutical ternary mixture of omeprazole, tinidazole and clarithromycin. Spectrochim. Acta, Part A., 2012, 96, 259-270.
[101]
Ivic, M.L.A.; Petrović, S.D.; Vonmoos, F.; Mijin, D.Ž.; Drljević, K.M. The qualitative electrochemical determination of clarithromycin and spectroscopic detection of its structural changes at gold electrode. Electrochem. Commun., 2007, 9, 1643-1647.
[102]
Bekele, L.K.; Gebeyehu, G.G. Application of different analytical techniques and microbiological assays for the analysis of macrolide antibiotics from pharmaceutical dosage forms and biological matrices. ISRN Anal. Chem., 2012, 1-17.
[103]
Khashaba, P.Y. Spectrofluorimetric analysis of certain macrolide antibiotics in bulk and pharmaceutical formulations. J. Pharm. Biomed. Anal., 2002, 27, 923-932.
[104]
Peng, J.; Hu, X. A simple fluorescence quenching method for roxithromycin determination using CdTe quantum dots as probes. J. Luminescence, 2011, 131, 952-955.
[105]
de Oliveira, V.; Bergold, A.M.; Schapoval, E.E.S. High performance liquid chromatographic determination of roxithromycin in tablets. Anal. Lett., 1996, 29, 2377-2382.
[106]
Macek, J.; Ptáček, P.; Klíma, J. Determination of roxithromycin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J. Chromatogr. B, 1999, 723, 233-238.
[107]
Glowka, F.K.; Karazniewicz-Lada, M. Determination of roxithromycin in human plasma by HPLC with fluorescence and UV absorbance detection: Application to a pharmacokinetic study. J. Chromatogr. B, 2007, 852, 669-673.
[108]
Drljevic-Djuric, K.M.; Jović, V.D.; Lacnjevac, U.Č.; Ivić, M.L.A.; Djordjević, S.B. Voltammetric and differential pulse determination of roxithromycin. Electrochim. Acta, 2010, 56, 47-52.
[109]
Zhang, L.; Duan, X.; Wen, Y.; Xu, J.; Zhang, O. Electrochemical behaviors of roxithromycin at poly(3,4-ethylenedioxythiophene) modified gold electrode and its electrochemical determination. Electrochim. Acta, 2012, 72, 179-185.
[110]
Dubois, M.; Fluchard, D.; Sior, E.; Delahaut, P. Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B, 2001, 753, 189-202.
[111]
Miao, X.S.; Metcalfe, C.D. Determination of pharmaceuticals in aqueous samples using positive and negative voltage switching microbore liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass Spectrom., 2003, 38, 27-34.
[112]
Wang, P.; Qi, M.; Jin, X. Determination of roxithromycin in rat lung tissue by liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2005, 39, 618-623.