Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

A Green Approach to the Synthesis of Novel Indole Substituted 2-Amino- 4,5-dihydro-3-furancarbonitriles in Water

Author(s): Pannala Padmaja, Pedavenkatagari Narayana Reddy* and Bijaya Ketan Sahoo

Volume 16, Issue 3, 2019

Page: [209 - 214] Pages: 6

DOI: 10.2174/1570178615666180917104820

Price: $65

Abstract

2-Amino-4,5-dihydro-3-furancarbonitriles (ADFCs) have attracted much attention due to their utility as valuable synthetic intermediates for the preparation of a series of acyclic and cyclic organic compounds. On the other hand, indoles substituted with furans are highly interesting compounds displaying a wide range of biological and pharmaceutical activities. However, to the best of our knowledge, indole substituted 2-amino-4,5-dihydro-3-furancarbonitriles have not been previously reported. A new and efficient synthesis of indole substituted 2-amino-4,5-dihydro-3-furancarbonitriles has been developed in two steps using water as a solvent. The first step of the sequence involves threecomponent reaction of phenylglyoxals, indoles and malononitrile under aqueous and catalyst-free conditions for the synthesis of indole substituted β,β-dicyanoketones. Reduction of the obtained β,β- dicyanoketones with sodium borohydride in water at room temperature afforded the indole substituted 2-amino-4,5-dihydro-3-furancarbonitriles in good yields. Several substituted phenylglyooxals were reacted smoothly with indole or 2-methylindole and malononitrile to give the corresponding indole substituted β,β-dicyanoketones in good yields. Treatment of the obtained β,β-dicyanoketones with sodium borohydride in water furnished exclusively the indole substituted 2-amino-4,5-dihydro-3- furancarbonitriles in good yields. We have developed an efficient straightforward access to indole substituted β,β-dicyanoketones by one-pot three-component reaction of phenylglyoxals, indoles and malononitrile. The synthetic utility of obtained indole substituted β,β-dicyanoketones has been outlined by the preparation of indole substituted 2-amino-4,5-dihydro-3-furancarbonitriles. The advantage of catalyst-free, atom-economical and environmental benignity render it promising methods for preparation of indole substituted 2-amino-4,5-dihydro-3-furancarbonitriles.

Keywords: 2-Amino-4, 5-dihydro-3-furancarbonitriles, β, β-dicyanoketones, indoles, phenylglyoxals, malononitrile, organic compound.

Graphical Abstract

[1]
Meyers, A.I. Heterocycles in Organic Synthesis; John Wiley & Sons: New York, 1974.
[2]
Dean, F.M. Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; Academic: New York, 1982, Vol. 30, p. 167.
[3]
Merritt, A.T.; Ley, S.V. Nat. Prod. Rep., 1992, 9, 243-287.
[4]
Graening, T.; Thrun, F. Comprehensive Heterocyclic Chemistry III; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K., Eds.; Pergamon: New York, 2008, Vol. 3, p. 497.
[5]
Matsuya, Y.; Suzuki, N.; Kobayashi, S.Y.; Miyahara, T.; Ochiai, H.; Nemoto, H. Bioorg. Med. Chem., 2010, 18, 1477-1481.
[6]
Yamagata, K.; Tomioka, Y.; Yamazaki, M. Chem. Pharm. Bull. (Tokyo), 1986, 34, 590-594.
[7]
Maruoka, H.; Okabe, F.; Yamagata, K. Synth. Commun., 2008, 38, 559-566.
[8]
Campaigne, E.; Ellis, R.L.; Bradford, M.; Ho, J. J. Med. Chem., 1969, 12, 339-342.
[9]
Campaigne, E.; Bradford, M. J. Heterocycl. Chem., 1970, 7, 257-260.
[10]
Wamhoff, H.; Thiemig, H.A. Chem. Ber., 1985, 118, 4473-4485.
[11]
Wamhoff, H.; Thiemig, H.A. Chem. Ber., 1986, 119, 1070-1076.
[12]
Maruoka, H.; Yamagata, K.; Yamazaki, M. J. Heterocycl. Chem., 2001, 38, 269-274.
[13]
Maruoka, H.; Okabe, F.; Yamagata, K. J. Heterocycl. Chem., 2008, 45, 541-545.
[14]
Maruoka, H.; Okabe, F.; Masumoto, E.; Fujioka, T.; Yamagata, K. Heterocycles, 2010, 80, 637-644.
[15]
Aran, V.J.; Perez, M.A.; Soto, J.L. J. Chem. Soc., Perkin Trans. 1, 1984, 1, 2009-2011.
[16]
Yamagata, K.; Okabe, F.; Maruoka, H.; Tagawa, Y. J. Heterocycl. Chem., 2005, 42, 543-549.
[17]
Maruoka, H.; Okabe, F.; Yamagata, K. Heterocycles, 2007, 74, 383-396.
[18]
Maruoka, H.; Yamazaki, M.; Tomioka, Y. J. Heterocycl. Chem., 2002, 39, 743-749.
[19]
Morgenlie, S. Acta Chem. Scand., 1970, 24, 365-366.
[20]
Yamagata, K.; Maruoka, H.; Hashimoto, Y.; Yamazaki, M. Heterocycles, 1989, 29, 5-9.
[21]
Maruoka, H.; Yamagata, K.; Yamazaki, M. Heterocycles, 1990, 31, 2011-2023.
[22]
Campaigne, E.; Ellis, R.L.; Bradford, M. J. Heterocycl. Chem., 1969, 6, 159-162.
[23]
Higashiyama, K.; Nagase, H.; Yamaguchi, R.; Kawai, K.I.; Otomasu, H. Chem. Pharm. Bull. (Tokyo), 1985, 33, 544-550.
[24]
Matsuda, T.; Yamagata, K.; Tomioka, Y. Chem. Pharm. Bull. (Tokyo), 1985, 33, 937-943.
[25]
Sera, A.; Tsuzuki, T.; Satoh, E.; Itoh, K. Bull. Chem. Soc. Jpn., 1992, 65, 3068-3071.
[26]
Xu, X.; Zhang, Y. Synth. Commun., 2003, 33, 2643-2656.
[27]
Bardasov, I.; Kayukova, O.; Kayukov, Y.; Ershov, O.; Belikov, M.; Nasakin, O. Chem. Heterocycl. Compd., 2009, 45, 1035-1038.
[28]
Matiadis, D.; Prousis, K.C.; Igglessi-Markopoulou, O. Molecules, 2009, 14, 3914-3921.
[29]
Al-Mousawi, S.M.; Moustafa, M.S.; Meier, H.; Kolshorn, H.; Elnagdi, M.H. Molecules, 2009, 14, 798-806.
[30]
Bandini, M.; Melloni, A.; Tommasi, S.; Umani-Ronchi, A. Synlett, 2005, 1199-1222.
[31]
Lancianesi, S.; Palmieri, A.; Petrini, M. Chem. Rev., 2014, 114, 7108-7149.
[32]
Campbell, M.M.; Cosford, N.; Zongli, L.; Sainsbury, M. Tetrahedron, 1987, 43, 1117-1122.
[33]
Sun, C.; Ji, S.J.; Liu, Y. Tetrahedron Lett., 2007, 48, 8987-8989.
[34]
Suarez, A.; Martinez, F.; Sanz, R. Org. Biomol. Chem., 2016, 14, 11212-11219.
[35]
Uchuskin, M.G.; Molodtsova, N.V.; Abaev, V.T.; Trushkov, I.V.; Butin, A.V. Tetrahedron, 2012, 68, 4252-4258.
[36]
Yang, Y.; Gao, M.; Wu, L.M.; Deng, C.; Zhang, D.X.; Gao, Y.; Zhu, Y.P.; Wu, A.X. Tetrahedron, 2011, 67, 5142-5149.
[37]
Blay, G.; Fernandez, I.; Monleon, A.; Pedro, J.R. Vila, C. Tetrahedron, 2009, 65, 9264-9270.
[38]
Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35, 68-82.
[39]
Minakata, S.; Komatsu, M. Chem. Rev., 2009, 109, 711-724.
[40]
Butler, R.N.; Coyne, A.G. Chem. Rev., 2010, 110, 6302-6337.
[41]
Li, B.; Dixneuf, P.H. Chem. Soc. Rev., 2013, 42, 5744-5767.
[42]
Levin, E.; Ivry, E.; Diesendruck, C.E.; Lemcoff, N.G. Chem. Rev., 2015, 115, 4607-4692.
[43]
Singh, V.K.; Dubey, R.; Upadhyay, A.; Sharma, L.K. Singh. R.K.P. Tetrahedron Lett., 2017, 58, 4227-4231.
[44]
Rajesh, U.C.; Kholiya, R.; Thakur, A.; Rawat, D.S. Tetrahedron Lett., 2015, 56, 1790-1793.
[45]
Chandrasekhar, S.; Patro, V.; Reddy, G.P.K.; Gree, R. Tetrahedron Lett., 2012, 53, 6223-6225.
[46]
Ghohe, N.M.; Tayebee, R.; Amini, M.M.; Osatiashtiani, A.; Isaacs, M.A.; Lee, A.F. Tetrahedron, 2017, 73, 5862-5871.
[47]
He, Y.H.; Cao, J.F.; Li, R.; Xiang, Y.; Yang, D.C.; Guan, Z. Tetrahedron, 2015, 71, 9299-9306.
[48]
Moiseeva, I.V.; Lukin, P.M.; Nasakin, O.E.; Romanov, V.N.; Tafeenko, V.A.; Bulai, A.Kh.; Sharbatyan, P.A. Chem. Heterocycl. Compd., 1990, 26, 830-830.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy