Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Biosensors in Drug Discovery and Drug Analysis

Author(s): Elif Burcu Aydin, Muhammet Aydin and Mustafa Kemal Sezginturk*

Volume 15, Issue 4, 2019

Page: [467 - 484] Pages: 18

DOI: 10.2174/1573411014666180912131811

Price: $65

Abstract

Background: The determination of drugs in pharmaceutical formulations and human biologic fluids is important for pharmaceutical and medical sciences. Successful analysis requires low sensitivity, high selectivity and minimum interference effects. Current analytical methods can detect drugs at very low levels but these methods require long sample preparation steps, extraction prior to analysis, highly trained technical staff and high-cost instruments. Biosensors offer several advantages such as short analysis time, high sensitivity, real-time analysis, low-cost instruments, and short pretreatment steps over traditional techniques. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the degradation products and metabolites in biological fluids. The present review gives comprehensive information on the application of biosensors for drug discovery and analysis. Moreover, this review focuses on the fabrication of these biosensors.

Methods: Biosensors can be classified as the utilized bioreceptor and the signal transduction mechanism. The classification based on signal transductions includes electrochemical optical, thermal or acoustic. Electrochemical and optic transducers are mostly utilized transducers used for drug analysis. There are many biological recognition elements, such as enzymes, antibodies, cells that have been used in fabricating of biosensors. Aptamers and antibodies are the most widely used recognition elements for the screening of the drugs. Electrochemical sensors and biosensors have several advantages such as low detection limits, a wide linear response range, good stability and reproducibility. Optical biosensors have several advantages such as direct, real-time and label-free detection of many biological and chemical substances, high specificity, sensitivity, small size and low cost. Modified electrodes enhance sensitivity of the electrodes to develop a new biosensor with desired features. Chemically modified electrodes have gained attention in drug analysis owing to low background current, wide potential window range, simple surface renewal, low detection limit and low cost. Modified electrodes produced by modifying of a solid surface electrode via different materials (carbonaceous materials, metal nanoparticles, polymer, biomolecules) immobilization. Recent advances in nanotechnology offer opportunities to design and construct biosensors. Unique features of nanomaterials provide many advantages in the fabrication of biosensors. Nanomaterials have controllable chemical structures, large surface to volume ratios, functional groups on their surface. To develop proteininorganic hybrid nanomaterials, four preparation methods have been used. These methods are immobilization, conjugation, crosslinking and self-assembly. In the present manuscript, applications of different biosensors, fabricated by using several materials, for drug analysis are reviewed. The biosensing strategies are investigated and discussed in detail.

Results: Several analytical techniques such as chromatography, spectroscopy, radiometry, immunoassays and electrochemistry have been used for drug analysis and quantification. Methods based on chromatography require timeconsuming procedure, long sample-preparation steps, expensive instruments and trained staff. Compared to chromatographic methods, immunoassays have simple protocols and lower cost. Electrochemical measurements have many advantages over traditional chemical analyses and give information about drug quantity, metabolic fate of drugs, and pharmacological activity. Moreover, the electroanalytical methods are useful to determine drugs sensitively and selectivity. Additionally, these methods decrease analysis cost and require low-cost instruments and simple sample pretreatment steps.

Conclusion: In recent years, drug analyses are performed using traditional techniques. These techniques have a good detection limit, but they have some limitations such as long analysis time, expensive device and experienced personnel requirement. Increased demand for practical and low-cost analytical techniques biosensor has gained interest for drug determinations in medical sciences. Biosensors are unique and successful devices when compared to traditional techniques. For drug determination, different electrode modification materials and different biorecognition elements are used for biosensor construction. Several biosensor construction strategies have been developed to enhance the biosensor performance. With the considerable progress in electrode surface modification, promotes the selectivity of the biosensor, decreases the production cost and provides miniaturization. In the next years, advances in technology will provide low cost, sensitive, selective biosensors for drug analysis in drug formulations and biological samples.

Keywords: Biorecognition element, biosensors, drug analysis, drug discovery, electrochemical biosensor, optical biosensors.

Graphical Abstract

[1]
Brahman, P.K.; Suresh, L.; Lokesh, V.; Nizamuddin, S. Fabrication of highly sensitive and selective nanocomposite film based on CuNPs/fullerene-C 60/MWCNTs: An electrochemical nanosensor for trace recognition of paracetamol. Anal. Chim. Acta, 2016, 917, 107-116.
[2]
Ghadimi, H.; Tehrani, R.M.; Ali, A.S.M.; Mohamed, N.; Ab Ghani, S. Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta, 2013, 765, 70-76.
[3]
Rahi, A.; Karimian, K.; Heli, H. Nanostructured materials in electroanalysis of pharmaceuticals. Anal. Biochem., 2016, 497, 39-47.
[4]
Gupta, A.K.; Dubey, R.S.; Malik, J.K. Application of modern electroanalytical techniques: Recent trend in pharmaceutical and drug analysis. Int. J. Pharm. Sci. Res., 2013, 4(7), 2450.
[5]
Sanvicens, N.; Mannelli, I.; Salvador, J-P.; Valera, E.; Marco, M-P. Biosensors for pharmaceuticals based on novel technology. TrAC Tr. Anal. Chem., 2011, 30(3), 541-553.
[6]
Nigović, B.; Sadiković, M.; Jurić, S. Electrochemical sensing of mesalazine and its N-acetylated metabolite in biological samples using functionalized carbon nanotubes. Talanta, 2016, 147, 50-58.
[7]
Saljooqi, A.; Shamspur, T.; Mostafavi, A. Ag-4-ATP-MWCNT electrode modified with dsDNA as label-free electrochemical sensor for the detection of daunorubicin anticancer drug. Bioelectrochemistry, 2017, 118, 161-167.
[8]
Yu, D.; Blankert, B.; Viré, J.C.; Kauffmann, J.M. Biosensors in drug discovery and drug analysis. Anal. Lett., 2005, 38(11), 1687-1701.
[9]
Bahadır, E.B.; Sezgintürk, M.K. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta, 2015, 132, 162-174.
[10]
Kalambate, P.K.; Srivastava, A.K. Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocom-posite modified carbon paste electrode. Sens. Actuators B Chem., 2016, 233, 237-248.
[11]
Li, J.; Liu, J.; Tan, G.; Jiang, J.; Peng, S.; Deng, M.; Qian, D.; Feng, Y.; Liu, Y. High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform. Biosens. Bioelectron., 2014, 54, 468-475.
[12]
Gil, E.D.S.; Melo, G.R.D. Electrochemical biosensors in pharmaceutical analysis. Braz. J. Pharm. Sci., 2010, 46(3), 375-391.
[13]
Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C, 2016, 59, 168-176.
[14]
Ensafi, A.A.; Allafchian, A.R.; Rezaei, B. A sensitive and selective voltammetric sensor based on multiwall carbon nanotubes decorated with MgCr 2 O 4 for the determination of azithromycin. Colloids Surf. B Biointerfaces, 2013, 103, 468-474.
[15]
Jalali, F.; Ardeshiri, M. Application of carbon nanotubes-ionic liquid hybrid in a sensitive atorvastatin ion-selective electrode. Mater. Sci. Eng. C, 2016, 69, 276-282.
[16]
Beitollahi, H.; Taher, M.A.; Ahmadipour, M.; Hosseinzadeh, R. Electrocatalytic determination of captopril using a modified carbon nanotube paste electrode: Application to determination of captopril in pharmaceutical and biological samples. Measurement, 2014, 47, 770-776.
[17]
Karthik, R.; Sasikumar, R.; Chen, S-M.; Kumar, J.V.; Elangovan, A.; Muthuraj, V.; Muthukrishnan, P.; Al-Hemaid, F.M.; Ali, M.A.; Elshikh, M.S. A highly sensitive and selective electrochemical determination of non-steroidal prostate anti-cancer drug nilutamide based on f-MWCNT in tablet and human blood serum sample. J. Colloid Interface Sci., 2017, 487, 289-296.
[18]
Li, Y.; Feng, S.; Li, S.; Zhang, Y.; Zhong, Y. A high effect polymer-free covalent layer by layer self-assemble carboxylated MWCNTs films modified GCE for the detection of paracetamol. Sens. Actuators B Chem., 2014, 190, 999-1005.
[19]
Shahrokhian, S.; Kamalzadeh, Z.; Hamzehloei, A. Electrochemical determination of Clozapine on MWCNTs/New Coccine doped PPY modified GCE: An experimental design approach. Bioelectrochemistry, 2013, 90, 36-43.
[20]
Ensafi, A.A.; Lesani, S.; Amini, M.; Rezaei, B. Electrochemical ds-DNA-based biosensor decorated with chitosan modified multiwall carbon nanotubes for phenazopyridine biodetection. J. Taiwan Inst. Chem. Eng., 2015, 54, 165-169.
[21]
Wu, X.; Kuang, H.; Hao, C.; Xing, C.; Wang, L.; Xu, C. Paper supported immunosensor for detection of antibiotics. Biosens. Bioelectron., 2012, 33(1), 309-312.
[22]
Simioni, N.B.; Silva, T.A.; Oliveira, G.G.; Fatibello-Filho, O. A nanodiamond-based electrochemical sensor for the determination of pyrazinamide antibiotic. Sens. Actuators B Chem., 2017, 250, 315-323.
[23]
Agrawal, B.; Chandra, P.; Goyal, R.N.; Shim, Y-B. Detection of norfloxacin and monitoring its effect on caffeine catabolism in urine samples. Biosens. Bioelectron., 2013, 47, 307-312.
[24]
Devaraj, M.; Deivasigamani, R.K.; Jeyadevan, S. Enhancement of the electrochemical behavior of CuO nanoleaves on MWCNTs/GC composite film modified electrode for determination of norfloxacin. Colloids Surf. B Biointerfaces, 2013, 102, 554-561.
[25]
da Silva, H.; Pacheco, J.; Silva, J.; Viswanathan, S.; Delerue-Matos, C. Molecularly imprinted sensor for voltammetric detection of norfloxacin. Sens. Actuators B Chem., 2015, 219, 301-307.
[26]
Liu, J.; Duan, Y. Saliva: A potential media for disease diagnostics and monitoring. Oral Oncol., 2012, 48(7), 569-577.
[27]
Amiri-Aref, M.; Raoof, J.B.; Ojani, R. Electrocatalytic oxidation and selective determination of an opioid analgesic methadone in the presence of acetaminophen at a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes: application for human urine, saliva and pharmaceutical samples analysis. Colloids Surf. B Biointerfaces, 2013, 109, 287-293.
[28]
Arvand, M.; Palizkar, B. Development of a modified electrode with amine-functionalized TiO 2/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine. Mater. Sci. Eng. C, 2013, 33(8), 4876-4883.
[29]
Zhai, H.; Liu, Z.; Chen, Z.; Liang, Z.; Su, Z.; Wang, S. A sensitive electrochemical sensor with sulfonated graphene sheets/oxygen-functionalized multi-walled carbon nanotubes modified electrode for the detection of clenbuterol. Sens. Actuators B Chem., 2015, 210, 483-490.
[30]
Bo, B.; Zhu, X.; Miao, P.; Pei, D.; Jiang, B.; Lou, Y.; Shu, Y.; Li, G. An electrochemical biosensor for clenbuterol detection and pharmacokinetics investigation. Talanta, 2013, 113, 36-40.
[31]
Liu, S.; Wang, Y.; Xu, W.; Leng, X.; Wang, H.; Guo, Y.; Huang, J. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Biosens. Bioelectron., 2017, 88, 181-187.
[32]
Karadas, N.; Sanli, S.; Akmese, B.; Dogan-Topal, B.; Can, A.; Ozkan, S.A. Analytical application of polymethylene blue-multiwalled carbon nanotubes modified glassy carbon electrode on anticancer drug irinotecan and determination of its ionization constant value. Talanta, 2013, 115, 911-919.
[33]
Thomas, T.; Mascarenhas, R.J.; Swamy, B.K.; Martis, P.; Mekhalif, Z.; Sherigara, B. Multi-walled carbon nanotube/poly (glycine) modified carbon paste electrode for the determination of dopamine in biological fluids and pharmaceuticals. Colloids Surf. B Biointerfaces, 2013, 110, 458-465.
[34]
Turan, J.; Kesik, M.; Soylemez, S.; Goker, S.; Kolb, M.; Bahadir, M.; Toppare, L. Development of an amperometric biosensor based on a novel conducting copolymer for detection of anti-dementia drugs. J. Electroanal. Chem., 2014, 735, 43-50.
[35]
Paimard, G.; Gholivand, M.B.; Shamsipur, M. Determination of ganciclovir as an antiviral drug and its interaction with DNA at Fe 3 O 4/carboxylated multi-walled carbon nanotubes modified glassy carbon electrode. Measurement, 2016, 77, 269-277.
[36]
Radhapyari, K.; Kotoky, P.; Das, M.R.; Khan, R. Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta, 2013, 111, 47-53.
[37]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples. Biosens. Bioelectron., 2017, 97, 169-176.
[38]
Shoja, Y.; Rafati, A.A.; Ghodsi, J. Electropolymerization of Ni–LD metallopolymers on gold nanoparticles enriched multi-walled carbon nanotubes as nano-structure electrocatalyst for efficient voltammetric sertraline detection in human serum. Electrochim. Acta, 2016, 203, 281-291.
[39]
Radhapyari, K.; Kotoky, P.; Khan, R. Detection of anticancer drug tamoxifen using biosensor based on polyaniline probe modified with horseradish peroxidase. Mater. Sci. Eng. C, 2013, 33(2), 583-587.
[40]
Hassanein, A.; Salahuddin, N.; Matsuda, A.; Kawamura, G.; Elfiky, M. Fabrication of biosensor based on Chitosan-ZnO/Polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application. Mater. Sci. Eng. C, 2017.
[41]
Conzuelo, F.; Montiel, V.R-V.; Campuzano, S.; Gamella, M.; Torrente-Rodríguez, R.; Reviejo, A.; Pingarrón, J. Rapid screening of multiple antibiotic residues in milk using disposable ampero-metric magnetosensors. Anal. Chim. Acta, 2014, 820, 32-38.
[42]
Rafati, A.A.; Afraz, A. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode. Mater. Sci. Eng. C, 2014, 39, 105-112.
[43]
Gholivand, M.B.; Mohammadi-Behzad, L. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode. Mater. Sci. Eng. C, 2015, 57, 77-87.
[44]
Gholivand, M.; Torkashvand, M. The fabrication of a new electrochemical sensor based on electropolymerization of nanocomposite gold nanoparticle-molecularly imprinted polymer for determination of valganciclovir. Mater. Sci. Eng. C, 2016, 59, 594-603.
[45]
Munawar, A.; Tahir, M.A.; Shaheen, A.; Lieberzeit, P.A.; Khan, W.S.; Bajwa, S.Z. Investigating nanohybrid material based on 3D CNTs@ Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J. Hazard. Mater., 2018, 342, 96-106.
[46]
Cooper, M.A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov., 2002, 1(7), 515.
[47]
Damborský, P.; Švitel, J. Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[48]
Jiang, X.; Feng, D-Q.; Liu, G.; Fan, D.; Wang, W. A fluorescent switch sensor for detection of anticancer drug and ctDNA based on the glutathione stabilized gold nanoclusters. Sens. Actuators B Chem., 2016, 232, 276-282.
[49]
Mao, A.; Li, H.; Jin, D.; Yu, L.; Hu, X. Fabrication of electrochemical sensor for paracetamol based on multi-walled carbon nanotubes and chitosan–copper complex by self-assembly technique. Talanta, 2015, 144, 252-257.
[50]
Song, E.; Yu, M.; Wang, Y.; Hu, W.; Cheng, D.; Swihart, M.T.; Song, Y. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens. Bioelectron., 2015, 72, 320-325.
[51]
Ha, N-R.; Jung, I-P.; Kim, S-H.; Kim, A-R.; Yoon, M-Y. Paper chip-based colorimetric sensing assay for ultra-sensitive detection of residual kanamycin. Process Biochem., 2017, 62, 161-168.
[52]
Emrani, A.S.; Danesh, N.M.; Lavaee, P.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem., 2016, 190, 115-121.
[53]
Wang, Y.; Sun, Y.; Dai, H.; Ni, P.; Jiang, S.; Lu, W.; Li, Z.; Li, Z. A colorimetric biosensor using Fe 3 O 4 nanoparticles for highly sensitive and selective detection of tetracyclines. Sens. Actuators B Chem., 2016, 236, 621-626.
[54]
Zhang, X.; Zhang, Y-C.; Zhang, J-W. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta, 2016, 161, 567-573.
[55]
Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Abnous, K. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem., 2016, 203, 145-149.
[56]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Gupta, V.K.; Ahmar, H.; Asadi, M.H. A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J. Mol. Liq., 2014, 196, 258-263.
[57]
Ramezani, M.; Danesh, N.M.; Lavaee, P.; Abnous, K.; Taghdisi, S.M. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens. Bioelectron., 2015, 70, 181-187.
[58]
Talemi, R.P.; Mashhadizadeh, M.H. A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode. Talanta, 2015, 131, 460-466.
[59]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Abnous, K. A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens. Bioelectron., 2016, 85, 509-514.
[60]
Yu, Z-G.; Lai, R.Y. A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta, 2018, 176, 619-624.
[61]
Huang, Q.; Zhang, H.; Hu, S.; Li, F.; Weng, W.; Chen, J.; Wang, Q.; He, Y.; Zhang, W.; Bao, X. A sensitive and reliable dopamine biosensor was developed based on the Au@ carbon dots–chitosan composite film. Biosens. Bioelectron., 2014, 52, 277-280.
[62]
Yan, Z.; Gan, N.; Li, T.; Cao, Y.; Chen, Y. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens. Bioelectron., 2016, 78, 51-57.
[63]
Chen, B.; Ma, M.; Su, X. An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and β-lactamase on glassy carbon electrode. Anal. Chim. Acta, 2010, 674(1), 89-95.
[64]
Wu, S.; Zhang, H.; Shi, Z.; Duan, N.; Fang, C.; Dai, S.; Wang, Z. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control, 2015, 50, 597-604.
[65]
Reddy, K.K.; Satyanarayana, M.; Goud, K.Y.; Gobi, K.V.; Kim, H. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine. Mater. Sci. Eng. C, 2017, 79, 93-99.
[66]
Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M. Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples. Sens. Actuators B Chem., 2018, 255, 1462-1470.
[67]
Wong, A.; Scontri, M.; Materon, E.M.; Lanza, M.R.; Sotomayor, M.D. Development and application of an electrochemical sensor modified with multi-walled carbon nanotubes and graphene oxide for the sensitive and selective detection of tetracycline. J. Electroanal. Chem., 2015, 757, 250-257.
[68]
Bayram, E.; Akyilmaz, E. Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sens. Actuators B Chem., 2016, 233, 409-418.
[69]
Soleymanpour, A.; Rezvani, S.A. Development of a novel carbon paste sensor for determination of micromolar amounts of sulfaquinoxaline in pharmaceutical and biological samples. Mater. Sci. Eng. C, 2016, 58, 504-509.
[70]
Zacco, E.; Adrian, J.; Galve, R.; Marco, M-P.; Alegret, S.; Pividori, M. Electrochemical magneto immunosensing of antibiotic residues in milk. Biosens. Bioelectron., 2007, 22(9), 2184-2191.
[71]
Ghodsi, J.; Rafati, A.A.; Shoja, Y. First report on electrocatalytic oxidation of oxytetracycline by horse radish peroxidase: application in developing a biosensor to oxytetracycline determination. Sens. Actuators B Chem., 2016, 224, 692-699.
[72]
Luo, Z.; Wang, Y.; Lu, X.; Chen, J.; Wei, F.; Huang, Z.; Zhou, C.; Duan, Y. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Anal. Chim. Acta, 2017, 984, 177-184.
[73]
Soler, M.; Mesa-Antunez, P.; Estevez, M-C.; Ruiz-Sanchez, A.J.; Otte, M.A.; Sepulveda, B.; Collado, D.; Mayorga, C.; Torres, M.J.; Perez-Inestrosa, E. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens. Bioelectron., 2015, 66, 115-123.
[74]
Li, H.; Xu, B.; Wang, D.; Zhou, Y.; Zhang, H.; Xia, W.; Xu, S.; Li, Y. Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles. J. Biotechnol., 2015, 203, 97-103.
[75]
Chandra, S.; Arora, K.; Bahadur, D. Impedimetric biosensor based on magnetic nanoparticles for electrochemical detection of dopamine. Mater. Sci. Eng. B, 2012, 177(17), 1531-1537.
[76]
Asadollahi-Baboli, M.; Mani-Varnosfaderani, A. Rapid and simultaneous determination of tetracycline and cefixime antibiotics by mean of gold nanoparticles-screen printed gold electrode and chemometrics tools. Measurement, 2014, 47, 145-149.
[77]
del Torno-de Román, L.; Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole. Sens. Actuators B Chem., 2016, 227, 48-53.
[78]
Sgobbi, L.F.; Razzino, C.A.; Machado, S.A. A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian blue nanocubes modified screen-printed electrode. Electrochim. Acta, 2016, 191, 1010-1017.
[79]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3, 5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[80]
He, Z.; Zang, S.; Liu, Y.; He, Y.; Lei, H. A multi-walled carbon nanotubes-poly (L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens. Bioelectron., 2015, 73, 85-92.
[81]
Baytak, A.K.; Teker, T.; Duzmen, S.; Aslanoglu, M. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Mater. Sci. Eng. C, 2016, 67, 125-131.
[82]
Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement, 2014, 51, 91-99.
[83]
Sanati, A.L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A.A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C, 2014, 35, 379-385.
[84]
Zamfir, L-G.; Rotariu, L.; Bala, C. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene–tetracyanoquinodimethane/ionic liquid conductive gels. Biosens. Bioelectron., 2013, 46, 61-67.
[85]
Ghalkhani, M.; Shahrokhian, S. Adsorptive stripping differential pulse voltammetric determination of mebendazole at a graphene nanosheets and carbon nanospheres/chitosan modified glassy carbon electrode. Sens. Actuators B Chem., 2013, 185, 669-674.
[86]
Kutluay, A.; Aslanoglu, M. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. Anal. Chim. Acta, 2014, 839, 59-66.
[87]
Valezi, C.F.; Duarte, E.H.; Mansano, G.R.; Dall’Antonia, L.H.; Tarley, C.R.T.; Sartori, E.R. An improved method for simultaneous square-wave voltammetric determination of amlodipine and enalapril at multi-walled carbon nanotubes paste electrode based on effect of cationic surfactant. Sens. Actuators B Chem., 2014, 205, 234-243.
[88]
Nigović, B.; Jurić, S.; Mitrović, I. Bismuth nanoparticles-carbon nanotubes modified sensor for sulfasalazine analysis. Talanta, 2017, 164, 201-208.
[89]
Yadav, S.K.; Choubey, P.K.; Agrawal, B.; Goyal, R.N. Carbon nanotube embedded poly 1, 5-diaminonapthalene modified pyrolytic graphite sensor for the determination of sulfacetamide in pharmaceutical formulations. Talanta, 2014, 118, 96-103.
[90]
Madrakian, T.; Haghshenas, E.; Ahmadi, M.; Afkhami, A. Construction a magneto carbon paste electrode using synthesized molecularly imprinted magnetic nanospheres for selective and sensitive determination of mefenamic acid in some real samples. Biosens. Bioelectron., 2015, 68, 712-718.
[91]
Baytak, A.K.; Aslanoglu, M. Decorating carbon nanotubes with nanoparticles of indium tin oxide for the voltammetric determination of metaproterenol. J. Electroanal. Chem., 2015, 757, 210-215.
[92]
Dai, H.; Li, Y.; Zhang, S.; Gong, L.; Li, X.; Lin, Y. Delicate photoelectrochemical sensor for folic acid based on carbon nanohorns supported interwoven titanate nanotubes. Sens. Actuators B Chem., 2016, 222, 120-126.
[93]
Desai, P.B.; Srivastava, A.K. Determination of amiloride at Nafion–CNT-nano-composite film sensor employing adsorptive stripping differential pulse voltammetry. Sens. Actuators B Chem., 2012, 169, 341-348.
[94]
Keyvanfard, M.; Alizad, K. Determination of isoproterenol in pharmaceutical and biological samples using a pyrogallol red multiwalled carbon nanotube paste electrode as a sensor. Chin. J. Catal., 2016, 37(4), 579-583.
[95]
Deiminiat, B.; Rounaghi, G.H.; Arbab-Zavar, M.H. Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol–gel and multiwall carbon nanotubes for determination of tramadol. Sens. Actuators B Chem., 2017, 238, 651-659.
[96]
Chamjangali, M.A.; Goudarzi, N.; Bagherian, G.; Reskety, A.A. Development of a new electrochemical sensor for verapamil based on multi-walled carbon nanotube immobilized on glassy carbon electrode. Measurement, 2015, 71, 23-30.
[97]
Marco, J.P.; Borges, K.B.; Tarley, C.R.T.; Ribeiro, E.S.; Pereira, A.C. Development of a simple, rapid and validated square wave voltametric method for determination of promethazine in raw material and pharmaceutical formulation using DNA modified multiwall carbon nanotube paste electrode. Sens. Actuators B Chem., 2013, 177, 251-259.
[98]
Jankowska-Śliwińska, J.; Dawgul, M.; Pijanowska, D.G. DNA-based Electrochemical Biosensor for Imipramine Detection. Procedia Eng., 2015, 120, 574-577.
[99]
Arvand, M.; Ansari, R.; Heydari, L. Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Mater. Sci. Eng. C, 2011, 31(8), 1819-1825.
[100]
Ghalkhani, M.; Beheshtian, J.; Salehi, M. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode. Mater. Sci. Eng. C, 2016, 69, 1345-1353.
[101]
Rahimi-Nasrabadi, M.; Khoshroo, A.; Mazloum-Ardakani, M. Electrochemical determination of diazepam in real samples based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators B Chem., 2017, 240, 125-131.
[102]
Madrakian, T.; Soleimani, M.; Afkhami, A. Electrochemical determination of fluvoxamine on mercury nanoparticle multi-walled carbon nanotube modified glassy carbon electrode. Sens. Actuators B Chem., 2015, 210, 259-266.
[103]
Silva, T.A.; Zanin, H.; Vicentini, F.C.; Corat, E.J.; Fatibello-Filho, O. Electrochemical determination of rosuvastatin calcium in pharmaceutical and human body fluid samples using a composite of vertically aligned carbon nanotubes and graphene oxide as the electrode material. Sens. Actuators B Chem., 2015, 218, 51-59.
[104]
Karadas, N.; Ozkan, S.A. Electrochemical preparation of sodium dodecylsulfate doped over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application on sensitive and selective determination of anticancer drug: Pemetrexed. Talanta, 2014, 119, 248-254.
[105]
Nasirizadeh, N.; Shekari, Z.; Zare, H.R.; Shishehbore, M.R.; Fakhari, A.R.; Ahmar, H. Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface. Biosens. Bioelectron., 2013, 41, 608-614.
[106]
Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Mahmood-Kashani, H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron., 2013, 44, 34-40.
[107]
Yuan, L.; Jiang, L.; Hui, T.; Jie, L.; Bingbin, X.; Feng, Y.; Yingchun, L. Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sens. Actuators B Chem., 2015, 206, 647-652.
[108]
Goyal, R.N.; Gupta, V.K.; Chatterjee, S. Fullerene-C 60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens. Bioelectron., 2009, 24(6), 1649-1654.
[109]
Karadas, N.; Bozal-Palabiyik, B.; Uslu, B.; Ozkan, S.A. Functionalized carbon nanotubes-With silver nanoparticles to fabricate a sensor for the determination of zolmitriptan in its dosage forms and biological samples. Sens. Actuators B Chem., 2013, 186, 486-494.
[110]
Shoja, Y.; Rafati, A.A.; Ghodsi, J. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-func-tionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa. Mater. Sci. Eng. C, 2016, 58, 835-845.
[111]
Zhang, Z.; Zhang, Y.; Song, R.; Wang, M.; Yan, F.; He, L.; Feng, X.; Fang, S.; Zhao, J.; Zhang, H. Manganese (II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine. Sens. Actuators B Chem., 2015, 211, 310-317.
[112]
Fernandes, D.M.; Silva, N.; Pereira, C.; Moura, C.; Magalhães, J.M.; Bachiller-Baeza, B.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; Delerue-Matos, C.; Freire, C. MnFe 2 O 4@ CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sens. Actuators B Chem., 2015, 218, 128-136.
[113]
Kutluay, A.; Aslanoglu, M. Modification of electrodes using conductive porous layers to confer selectivity for the voltammetric detection of paracetamol in the presence of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem., 2013, 185, 398-404.
[114]
Shahrokhian, S.; Azimzadeh, M.; Amini, M.K. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir. Mater. Sci. Eng. C, 2015, 53, 134-141.
[115]
Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@ Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron., 2014, 60, 277-285.
[116]
Ensafi, A.A.; Allafchian, A.R. Multiwall carbon nanotubes decorated with NiFe 2 O 4 magnetic nanoparticles, a new catalyst for voltammetric determination of cefixime. Colloids Surf. B Biointerfaces, 2013, 102, 687-693.
[117]
Dogan-Topal, B.; Bozal-Palabıyık, B.; Uslu, B.; Ozkan, S.A. Multi-walled carbon nanotube modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-viral drug valganciclovir in pharmaceuticals. Sens. Actuators B Chem., 2013, 177, 841-847.
[118]
Materon, E.M.; Wong, A.; Klein, S.I.; Liu, J.; Sotomayor, M.D. Multi-walled carbon nanotubes modified screen-printed electrodes for cisplatin detection. Electrochim. Acta, 2015, 158, 271-276.
[119]
Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/Cu (OH) 2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C, 2012, 32(6), 1682-1689.
[120]
Phukon, P.; Radhapyari, K.; Konwar, B.K.; Khan, R. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin. Mater. Sci. Eng. C, 2014, 37, 314-320.
[121]
Barsan, M.M.; Toledo, C.T.; Brett, C.M. New electrode architectures based on poly (methylene green) and functionalized carbon nanotubes: characterization and application to detection of acetaminophen and pyridoxine. J. Electroanal. Chem., 2015, 736, 8-15.
[122]
D’Souza, O.J.; Mascarenhas, R.J.; Thomas, T.; Basavaraja, B.M.; Saxena, A.K.; Mukhopadhyay, K.; Roy, D. Platinum decorated multi-walled carbon nanotubes/Triton X-100 modified carbon paste electrode for the sensitive amperometric determination of Paracetamol. J. Electroanal. Chem., 2015, 739, 49-57.
[123]
Heidarimoghadam, R.; Farmany, A. Rapid determination of furosemide in drug and blood plasma of wrestlers by a carboxyl-MWCNT sensor. Mater. Sci. Eng. C, 2016, 58, 1242-1245.
[124]
Dorraji, P.S.; Jalali, F. Sensitive amperometric determination of methimazole based on the electrocatalytic effect of rutin/multi-walled carbon nanotube film. Bioelectrochemistry, 2015, 101, 66-74.
[125]
Savalia, R.; Chatterjee, S. Sensitive detection of brucine an anti-metastatic drug for hepatocellular carcinoma at carbon nanotubes–nafion composite based biosensor. Biosens. Bioelectron., 2017, 98, 371-377.
[126]
Chandra, P.; Zaidi, S.A.; Noh, H-B.; Shim, Y-B. Separation and simultaneous detection of anticancer drugs in a microfluidic device with an amperometric biosensor. Biosens. Bioelectron., 2011, 28(1), 326-332.
[127]
Habibi, B.; Jahanbakhshi, M. Silver nanoparticles/multi walled carbon nanotubes nanocomposite modified electrode: Voltammetric determination of clonazepam. Electrochim. Acta, 2014, 118, 10-17.
[128]
Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H. Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO 2–Zn 2 SnO 4 nanocomposites paste electrode. Appl. Surf. Sci., 2016, 363, 490-498.
[129]
Habibi, B.; Abazari, M.; Pournaghi-Azar, M.H. Simultaneous determination of codeine and caffeine using single-walled carbon nanotubes modified carbon-ceramic electrode. Colloids Surf. B Biointerfaces, 2014, 114, 89-95.
[130]
Arvand, M.; Gholizadeh, T.M. Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloids Surf. B Biointerfaces, 2013, 103, 84-93.
[131]
Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Gupta, V.K.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq., 2014, 197, 114-119.
[132]
Zhang, C-Y.; Johnson, L.W. Quantifying RNA- Peptide Interaction by Single-quantum Dot-Based Nanosensor: An Approach for Drug Screening. Anal. Chem., 2007, 79, 7775-7781.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy