[1]
Brahman, P.K.; Suresh, L.; Lokesh, V.; Nizamuddin, S. Fabrication of highly sensitive and selective nanocomposite film based on CuNPs/fullerene-C 60/MWCNTs: An electrochemical nanosensor for trace recognition of paracetamol. Anal. Chim. Acta, 2016, 917, 107-116.
[2]
Ghadimi, H.; Tehrani, R.M.; Ali, A.S.M.; Mohamed, N.; Ab Ghani, S. Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta, 2013, 765, 70-76.
[3]
Rahi, A.; Karimian, K.; Heli, H. Nanostructured materials in electroanalysis of pharmaceuticals. Anal. Biochem., 2016, 497, 39-47.
[4]
Gupta, A.K.; Dubey, R.S.; Malik, J.K. Application of modern electroanalytical techniques: Recent trend in pharmaceutical and drug analysis. Int. J. Pharm. Sci. Res., 2013, 4(7), 2450.
[5]
Sanvicens, N.; Mannelli, I.; Salvador, J-P.; Valera, E.; Marco, M-P. Biosensors for pharmaceuticals based on novel technology. TrAC Tr. Anal. Chem., 2011, 30(3), 541-553.
[6]
Nigović, B.; Sadiković, M.; Jurić, S. Electrochemical sensing of mesalazine and its N-acetylated metabolite in biological samples using functionalized carbon nanotubes. Talanta, 2016, 147, 50-58.
[7]
Saljooqi, A.; Shamspur, T.; Mostafavi, A. Ag-4-ATP-MWCNT electrode modified with dsDNA as label-free electrochemical sensor for the detection of daunorubicin anticancer drug. Bioelectrochemistry, 2017, 118, 161-167.
[8]
Yu, D.; Blankert, B.; Viré, J.C.; Kauffmann, J.M. Biosensors in drug discovery and drug analysis. Anal. Lett., 2005, 38(11), 1687-1701.
[9]
Bahadır, E.B.; Sezgintürk, M.K. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta, 2015, 132, 162-174.
[10]
Kalambate, P.K.; Srivastava, A.K. Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocom-posite modified carbon paste electrode. Sens. Actuators B Chem., 2016, 233, 237-248.
[11]
Li, J.; Liu, J.; Tan, G.; Jiang, J.; Peng, S.; Deng, M.; Qian, D.; Feng, Y.; Liu, Y. High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform. Biosens. Bioelectron., 2014, 54, 468-475.
[12]
Gil, E.D.S.; Melo, G.R.D. Electrochemical biosensors in pharmaceutical analysis. Braz. J. Pharm. Sci., 2010, 46(3), 375-391.
[13]
Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C, 2016, 59, 168-176.
[14]
Ensafi, A.A.; Allafchian, A.R.; Rezaei, B. A sensitive and selective voltammetric sensor based on multiwall carbon nanotubes decorated with MgCr 2 O 4 for the determination of azithromycin. Colloids Surf. B Biointerfaces, 2013, 103, 468-474.
[15]
Jalali, F.; Ardeshiri, M. Application of carbon nanotubes-ionic liquid hybrid in a sensitive atorvastatin ion-selective electrode. Mater. Sci. Eng. C, 2016, 69, 276-282.
[16]
Beitollahi, H.; Taher, M.A.; Ahmadipour, M.; Hosseinzadeh, R. Electrocatalytic determination of captopril using a modified carbon nanotube paste electrode: Application to determination of captopril in pharmaceutical and biological samples. Measurement, 2014, 47, 770-776.
[17]
Karthik, R.; Sasikumar, R.; Chen, S-M.; Kumar, J.V.; Elangovan, A.; Muthuraj, V.; Muthukrishnan, P.; Al-Hemaid, F.M.; Ali, M.A.; Elshikh, M.S. A highly sensitive and selective electrochemical determination of non-steroidal prostate anti-cancer drug nilutamide based on f-MWCNT in tablet and human blood serum sample. J. Colloid Interface Sci., 2017, 487, 289-296.
[18]
Li, Y.; Feng, S.; Li, S.; Zhang, Y.; Zhong, Y. A high effect polymer-free covalent layer by layer self-assemble carboxylated MWCNTs films modified GCE for the detection of paracetamol. Sens. Actuators B Chem., 2014, 190, 999-1005.
[19]
Shahrokhian, S.; Kamalzadeh, Z.; Hamzehloei, A. Electrochemical determination of Clozapine on MWCNTs/New Coccine doped PPY modified GCE: An experimental design approach. Bioelectrochemistry, 2013, 90, 36-43.
[20]
Ensafi, A.A.; Lesani, S.; Amini, M.; Rezaei, B. Electrochemical ds-DNA-based biosensor decorated with chitosan modified multiwall carbon nanotubes for phenazopyridine biodetection. J. Taiwan Inst. Chem. Eng., 2015, 54, 165-169.
[21]
Wu, X.; Kuang, H.; Hao, C.; Xing, C.; Wang, L.; Xu, C. Paper supported immunosensor for detection of antibiotics. Biosens. Bioelectron., 2012, 33(1), 309-312.
[22]
Simioni, N.B.; Silva, T.A.; Oliveira, G.G.; Fatibello-Filho, O. A nanodiamond-based electrochemical sensor for the determination of pyrazinamide antibiotic. Sens. Actuators B Chem., 2017, 250, 315-323.
[23]
Agrawal, B.; Chandra, P.; Goyal, R.N.; Shim, Y-B. Detection of norfloxacin and monitoring its effect on caffeine catabolism in urine samples. Biosens. Bioelectron., 2013, 47, 307-312.
[24]
Devaraj, M.; Deivasigamani, R.K.; Jeyadevan, S. Enhancement of the electrochemical behavior of CuO nanoleaves on MWCNTs/GC composite film modified electrode for determination of norfloxacin. Colloids Surf. B Biointerfaces, 2013, 102, 554-561.
[25]
da Silva, H.; Pacheco, J.; Silva, J.; Viswanathan, S.; Delerue-Matos, C. Molecularly imprinted sensor for voltammetric detection of norfloxacin. Sens. Actuators B Chem., 2015, 219, 301-307.
[26]
Liu, J.; Duan, Y. Saliva: A potential media for disease diagnostics and monitoring. Oral Oncol., 2012, 48(7), 569-577.
[27]
Amiri-Aref, M.; Raoof, J.B.; Ojani, R. Electrocatalytic oxidation and selective determination of an opioid analgesic methadone in the presence of acetaminophen at a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes: application for human urine, saliva and pharmaceutical samples analysis. Colloids Surf. B Biointerfaces, 2013, 109, 287-293.
[28]
Arvand, M.; Palizkar, B. Development of a modified electrode with amine-functionalized TiO 2/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine. Mater. Sci. Eng. C, 2013, 33(8), 4876-4883.
[29]
Zhai, H.; Liu, Z.; Chen, Z.; Liang, Z.; Su, Z.; Wang, S. A sensitive electrochemical sensor with sulfonated graphene sheets/oxygen-functionalized multi-walled carbon nanotubes modified electrode for the detection of clenbuterol. Sens. Actuators B Chem., 2015, 210, 483-490.
[30]
Bo, B.; Zhu, X.; Miao, P.; Pei, D.; Jiang, B.; Lou, Y.; Shu, Y.; Li, G. An electrochemical biosensor for clenbuterol detection and pharmacokinetics investigation. Talanta, 2013, 113, 36-40.
[31]
Liu, S.; Wang, Y.; Xu, W.; Leng, X.; Wang, H.; Guo, Y.; Huang, J. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Biosens. Bioelectron., 2017, 88, 181-187.
[32]
Karadas, N.; Sanli, S.; Akmese, B.; Dogan-Topal, B.; Can, A.; Ozkan, S.A. Analytical application of polymethylene blue-multiwalled carbon nanotubes modified glassy carbon electrode on anticancer drug irinotecan and determination of its ionization constant value. Talanta, 2013, 115, 911-919.
[33]
Thomas, T.; Mascarenhas, R.J.; Swamy, B.K.; Martis, P.; Mekhalif, Z.; Sherigara, B. Multi-walled carbon nanotube/poly (glycine) modified carbon paste electrode for the determination of dopamine in biological fluids and pharmaceuticals. Colloids Surf. B Biointerfaces, 2013, 110, 458-465.
[34]
Turan, J.; Kesik, M.; Soylemez, S.; Goker, S.; Kolb, M.; Bahadir, M.; Toppare, L. Development of an amperometric biosensor based on a novel conducting copolymer for detection of anti-dementia drugs. J. Electroanal. Chem., 2014, 735, 43-50.
[35]
Paimard, G.; Gholivand, M.B.; Shamsipur, M. Determination of ganciclovir as an antiviral drug and its interaction with DNA at Fe 3 O 4/carboxylated multi-walled carbon nanotubes modified glassy carbon electrode. Measurement, 2016, 77, 269-277.
[36]
Radhapyari, K.; Kotoky, P.; Das, M.R.; Khan, R. Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta, 2013, 111, 47-53.
[37]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples. Biosens. Bioelectron., 2017, 97, 169-176.
[38]
Shoja, Y.; Rafati, A.A.; Ghodsi, J. Electropolymerization of Ni–LD metallopolymers on gold nanoparticles enriched multi-walled carbon nanotubes as nano-structure electrocatalyst for efficient voltammetric sertraline detection in human serum. Electrochim. Acta, 2016, 203, 281-291.
[39]
Radhapyari, K.; Kotoky, P.; Khan, R. Detection of anticancer drug tamoxifen using biosensor based on polyaniline probe modified with horseradish peroxidase. Mater. Sci. Eng. C, 2013, 33(2), 583-587.
[40]
Hassanein, A.; Salahuddin, N.; Matsuda, A.; Kawamura, G.; Elfiky, M. Fabrication of biosensor based on Chitosan-ZnO/Polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application. Mater. Sci. Eng. C, 2017.
[41]
Conzuelo, F.; Montiel, V.R-V.; Campuzano, S.; Gamella, M.; Torrente-Rodríguez, R.; Reviejo, A.; Pingarrón, J. Rapid screening of multiple antibiotic residues in milk using disposable ampero-metric magnetosensors. Anal. Chim. Acta, 2014, 820, 32-38.
[42]
Rafati, A.A.; Afraz, A. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode. Mater. Sci. Eng. C, 2014, 39, 105-112.
[43]
Gholivand, M.B.; Mohammadi-Behzad, L. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode. Mater. Sci. Eng. C, 2015, 57, 77-87.
[44]
Gholivand, M.; Torkashvand, M. The fabrication of a new electrochemical sensor based on electropolymerization of nanocomposite gold nanoparticle-molecularly imprinted polymer for determination of valganciclovir. Mater. Sci. Eng. C, 2016, 59, 594-603.
[45]
Munawar, A.; Tahir, M.A.; Shaheen, A.; Lieberzeit, P.A.; Khan, W.S.; Bajwa, S.Z. Investigating nanohybrid material based on 3D CNTs@ Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J. Hazard. Mater., 2018, 342, 96-106.
[46]
Cooper, M.A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov., 2002, 1(7), 515.
[47]
Damborský, P.; Švitel, J. Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[48]
Jiang, X.; Feng, D-Q.; Liu, G.; Fan, D.; Wang, W. A fluorescent switch sensor for detection of anticancer drug and ctDNA based on the glutathione stabilized gold nanoclusters. Sens. Actuators B Chem., 2016, 232, 276-282.
[49]
Mao, A.; Li, H.; Jin, D.; Yu, L.; Hu, X. Fabrication of electrochemical sensor for paracetamol based on multi-walled carbon nanotubes and chitosan–copper complex by self-assembly technique. Talanta, 2015, 144, 252-257.
[50]
Song, E.; Yu, M.; Wang, Y.; Hu, W.; Cheng, D.; Swihart, M.T.; Song, Y. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens. Bioelectron., 2015, 72, 320-325.
[51]
Ha, N-R.; Jung, I-P.; Kim, S-H.; Kim, A-R.; Yoon, M-Y. Paper chip-based colorimetric sensing assay for ultra-sensitive detection of residual kanamycin. Process Biochem., 2017, 62, 161-168.
[52]
Emrani, A.S.; Danesh, N.M.; Lavaee, P.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem., 2016, 190, 115-121.
[53]
Wang, Y.; Sun, Y.; Dai, H.; Ni, P.; Jiang, S.; Lu, W.; Li, Z.; Li, Z. A colorimetric biosensor using Fe 3 O 4 nanoparticles for highly sensitive and selective detection of tetracyclines. Sens. Actuators B Chem., 2016, 236, 621-626.
[54]
Zhang, X.; Zhang, Y-C.; Zhang, J-W. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta, 2016, 161, 567-573.
[55]
Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Abnous, K. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem., 2016, 203, 145-149.
[56]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Gupta, V.K.; Ahmar, H.; Asadi, M.H. A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J. Mol. Liq., 2014, 196, 258-263.
[57]
Ramezani, M.; Danesh, N.M.; Lavaee, P.; Abnous, K.; Taghdisi, S.M. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens. Bioelectron., 2015, 70, 181-187.
[58]
Talemi, R.P.; Mashhadizadeh, M.H. A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode. Talanta, 2015, 131, 460-466.
[59]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Abnous, K. A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens. Bioelectron., 2016, 85, 509-514.
[60]
Yu, Z-G.; Lai, R.Y. A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta, 2018, 176, 619-624.
[61]
Huang, Q.; Zhang, H.; Hu, S.; Li, F.; Weng, W.; Chen, J.; Wang, Q.; He, Y.; Zhang, W.; Bao, X. A sensitive and reliable dopamine biosensor was developed based on the Au@ carbon dots–chitosan composite film. Biosens. Bioelectron., 2014, 52, 277-280.
[62]
Yan, Z.; Gan, N.; Li, T.; Cao, Y.; Chen, Y. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens. Bioelectron., 2016, 78, 51-57.
[63]
Chen, B.; Ma, M.; Su, X. An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and β-lactamase on glassy carbon electrode. Anal. Chim. Acta, 2010, 674(1), 89-95.
[64]
Wu, S.; Zhang, H.; Shi, Z.; Duan, N.; Fang, C.; Dai, S.; Wang, Z. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control, 2015, 50, 597-604.
[65]
Reddy, K.K.; Satyanarayana, M.; Goud, K.Y.; Gobi, K.V.; Kim, H. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine. Mater. Sci. Eng. C, 2017, 79, 93-99.
[66]
Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M. Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples. Sens. Actuators B Chem., 2018, 255, 1462-1470.
[67]
Wong, A.; Scontri, M.; Materon, E.M.; Lanza, M.R.; Sotomayor, M.D. Development and application of an electrochemical sensor modified with multi-walled carbon nanotubes and graphene oxide for the sensitive and selective detection of tetracycline. J. Electroanal. Chem., 2015, 757, 250-257.
[68]
Bayram, E.; Akyilmaz, E. Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sens. Actuators B Chem., 2016, 233, 409-418.
[69]
Soleymanpour, A.; Rezvani, S.A. Development of a novel carbon paste sensor for determination of micromolar amounts of sulfaquinoxaline in pharmaceutical and biological samples. Mater. Sci. Eng. C, 2016, 58, 504-509.
[70]
Zacco, E.; Adrian, J.; Galve, R.; Marco, M-P.; Alegret, S.; Pividori, M. Electrochemical magneto immunosensing of antibiotic residues in milk. Biosens. Bioelectron., 2007, 22(9), 2184-2191.
[71]
Ghodsi, J.; Rafati, A.A.; Shoja, Y. First report on electrocatalytic oxidation of oxytetracycline by horse radish peroxidase: application in developing a biosensor to oxytetracycline determination. Sens. Actuators B Chem., 2016, 224, 692-699.
[72]
Luo, Z.; Wang, Y.; Lu, X.; Chen, J.; Wei, F.; Huang, Z.; Zhou, C.; Duan, Y. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Anal. Chim. Acta, 2017, 984, 177-184.
[73]
Soler, M.; Mesa-Antunez, P.; Estevez, M-C.; Ruiz-Sanchez, A.J.; Otte, M.A.; Sepulveda, B.; Collado, D.; Mayorga, C.; Torres, M.J.; Perez-Inestrosa, E. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens. Bioelectron., 2015, 66, 115-123.
[74]
Li, H.; Xu, B.; Wang, D.; Zhou, Y.; Zhang, H.; Xia, W.; Xu, S.; Li, Y. Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles. J. Biotechnol., 2015, 203, 97-103.
[75]
Chandra, S.; Arora, K.; Bahadur, D. Impedimetric biosensor based on magnetic nanoparticles for electrochemical detection of dopamine. Mater. Sci. Eng. B, 2012, 177(17), 1531-1537.
[76]
Asadollahi-Baboli, M.; Mani-Varnosfaderani, A. Rapid and simultaneous determination of tetracycline and cefixime antibiotics by mean of gold nanoparticles-screen printed gold electrode and chemometrics tools. Measurement, 2014, 47, 145-149.
[77]
del Torno-de Román, L.; Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole. Sens. Actuators B Chem., 2016, 227, 48-53.
[78]
Sgobbi, L.F.; Razzino, C.A.; Machado, S.A. A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian blue nanocubes modified screen-printed electrode. Electrochim. Acta, 2016, 191, 1010-1017.
[79]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3, 5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[80]
He, Z.; Zang, S.; Liu, Y.; He, Y.; Lei, H. A multi-walled carbon nanotubes-poly (L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens. Bioelectron., 2015, 73, 85-92.
[81]
Baytak, A.K.; Teker, T.; Duzmen, S.; Aslanoglu, M. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Mater. Sci. Eng. C, 2016, 67, 125-131.
[82]
Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement, 2014, 51, 91-99.
[83]
Sanati, A.L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A.A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C, 2014, 35, 379-385.
[84]
Zamfir, L-G.; Rotariu, L.; Bala, C. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene–tetracyanoquinodimethane/ionic liquid conductive gels. Biosens. Bioelectron., 2013, 46, 61-67.
[85]
Ghalkhani, M.; Shahrokhian, S. Adsorptive stripping differential pulse voltammetric determination of mebendazole at a graphene nanosheets and carbon nanospheres/chitosan modified glassy carbon electrode. Sens. Actuators B Chem., 2013, 185, 669-674.
[86]
Kutluay, A.; Aslanoglu, M. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. Anal. Chim. Acta, 2014, 839, 59-66.
[87]
Valezi, C.F.; Duarte, E.H.; Mansano, G.R.; Dall’Antonia, L.H.; Tarley, C.R.T.; Sartori, E.R. An improved method for simultaneous square-wave voltammetric determination of amlodipine and enalapril at multi-walled carbon nanotubes paste electrode based on effect of cationic surfactant. Sens. Actuators B Chem., 2014, 205, 234-243.
[88]
Nigović, B.; Jurić, S.; Mitrović, I. Bismuth nanoparticles-carbon nanotubes modified sensor for sulfasalazine analysis. Talanta, 2017, 164, 201-208.
[89]
Yadav, S.K.; Choubey, P.K.; Agrawal, B.; Goyal, R.N. Carbon nanotube embedded poly 1, 5-diaminonapthalene modified pyrolytic graphite sensor for the determination of sulfacetamide in pharmaceutical formulations. Talanta, 2014, 118, 96-103.
[90]
Madrakian, T.; Haghshenas, E.; Ahmadi, M.; Afkhami, A. Construction a magneto carbon paste electrode using synthesized molecularly imprinted magnetic nanospheres for selective and sensitive determination of mefenamic acid in some real samples. Biosens. Bioelectron., 2015, 68, 712-718.
[91]
Baytak, A.K.; Aslanoglu, M. Decorating carbon nanotubes with nanoparticles of indium tin oxide for the voltammetric determination of metaproterenol. J. Electroanal. Chem., 2015, 757, 210-215.
[92]
Dai, H.; Li, Y.; Zhang, S.; Gong, L.; Li, X.; Lin, Y. Delicate photoelectrochemical sensor for folic acid based on carbon nanohorns supported interwoven titanate nanotubes. Sens. Actuators B Chem., 2016, 222, 120-126.
[93]
Desai, P.B.; Srivastava, A.K. Determination of amiloride at Nafion–CNT-nano-composite film sensor employing adsorptive stripping differential pulse voltammetry. Sens. Actuators B Chem., 2012, 169, 341-348.
[94]
Keyvanfard, M.; Alizad, K. Determination of isoproterenol in pharmaceutical and biological samples using a pyrogallol red multiwalled carbon nanotube paste electrode as a sensor. Chin. J. Catal., 2016, 37(4), 579-583.
[95]
Deiminiat, B.; Rounaghi, G.H.; Arbab-Zavar, M.H. Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol–gel and multiwall carbon nanotubes for determination of tramadol. Sens. Actuators B Chem., 2017, 238, 651-659.
[96]
Chamjangali, M.A.; Goudarzi, N.; Bagherian, G.; Reskety, A.A. Development of a new electrochemical sensor for verapamil based on multi-walled carbon nanotube immobilized on glassy carbon electrode. Measurement, 2015, 71, 23-30.
[97]
Marco, J.P.; Borges, K.B.; Tarley, C.R.T.; Ribeiro, E.S.; Pereira, A.C. Development of a simple, rapid and validated square wave voltametric method for determination of promethazine in raw material and pharmaceutical formulation using DNA modified multiwall carbon nanotube paste electrode. Sens. Actuators B Chem., 2013, 177, 251-259.
[98]
Jankowska-Śliwińska, J.; Dawgul, M.; Pijanowska, D.G. DNA-based Electrochemical Biosensor for Imipramine Detection. Procedia Eng., 2015, 120, 574-577.
[99]
Arvand, M.; Ansari, R.; Heydari, L. Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Mater. Sci. Eng. C, 2011, 31(8), 1819-1825.
[100]
Ghalkhani, M.; Beheshtian, J.; Salehi, M. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode. Mater. Sci. Eng. C, 2016, 69, 1345-1353.
[101]
Rahimi-Nasrabadi, M.; Khoshroo, A.; Mazloum-Ardakani, M. Electrochemical determination of diazepam in real samples based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators B Chem., 2017, 240, 125-131.
[102]
Madrakian, T.; Soleimani, M.; Afkhami, A. Electrochemical determination of fluvoxamine on mercury nanoparticle multi-walled carbon nanotube modified glassy carbon electrode. Sens. Actuators B Chem., 2015, 210, 259-266.
[103]
Silva, T.A.; Zanin, H.; Vicentini, F.C.; Corat, E.J.; Fatibello-Filho, O. Electrochemical determination of rosuvastatin calcium in pharmaceutical and human body fluid samples using a composite of vertically aligned carbon nanotubes and graphene oxide as the electrode material. Sens. Actuators B Chem., 2015, 218, 51-59.
[104]
Karadas, N.; Ozkan, S.A. Electrochemical preparation of sodium dodecylsulfate doped over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application on sensitive and selective determination of anticancer drug: Pemetrexed. Talanta, 2014, 119, 248-254.
[105]
Nasirizadeh, N.; Shekari, Z.; Zare, H.R.; Shishehbore, M.R.; Fakhari, A.R.; Ahmar, H. Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface. Biosens. Bioelectron., 2013, 41, 608-614.
[106]
Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Mahmood-Kashani, H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron., 2013, 44, 34-40.
[107]
Yuan, L.; Jiang, L.; Hui, T.; Jie, L.; Bingbin, X.; Feng, Y.; Yingchun, L. Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sens. Actuators B Chem., 2015, 206, 647-652.
[108]
Goyal, R.N.; Gupta, V.K.; Chatterjee, S. Fullerene-C 60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens. Bioelectron., 2009, 24(6), 1649-1654.
[109]
Karadas, N.; Bozal-Palabiyik, B.; Uslu, B.; Ozkan, S.A. Functionalized carbon nanotubes-With silver nanoparticles to fabricate a sensor for the determination of zolmitriptan in its dosage forms and biological samples. Sens. Actuators B Chem., 2013, 186, 486-494.
[110]
Shoja, Y.; Rafati, A.A.; Ghodsi, J. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-func-tionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa. Mater. Sci. Eng. C, 2016, 58, 835-845.
[111]
Zhang, Z.; Zhang, Y.; Song, R.; Wang, M.; Yan, F.; He, L.; Feng, X.; Fang, S.; Zhao, J.; Zhang, H. Manganese (II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine. Sens. Actuators B Chem., 2015, 211, 310-317.
[112]
Fernandes, D.M.; Silva, N.; Pereira, C.; Moura, C.; Magalhães, J.M.; Bachiller-Baeza, B.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; Delerue-Matos, C.; Freire, C. MnFe 2 O 4@ CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sens. Actuators B Chem., 2015, 218, 128-136.
[113]
Kutluay, A.; Aslanoglu, M. Modification of electrodes using conductive porous layers to confer selectivity for the voltammetric detection of paracetamol in the presence of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem., 2013, 185, 398-404.
[114]
Shahrokhian, S.; Azimzadeh, M.; Amini, M.K. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir. Mater. Sci. Eng. C, 2015, 53, 134-141.
[115]
Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@ Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron., 2014, 60, 277-285.
[116]
Ensafi, A.A.; Allafchian, A.R. Multiwall carbon nanotubes decorated with NiFe 2 O 4 magnetic nanoparticles, a new catalyst for voltammetric determination of cefixime. Colloids Surf. B Biointerfaces, 2013, 102, 687-693.
[117]
Dogan-Topal, B.; Bozal-Palabıyık, B.; Uslu, B.; Ozkan, S.A. Multi-walled carbon nanotube modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-viral drug valganciclovir in pharmaceuticals. Sens. Actuators B Chem., 2013, 177, 841-847.
[118]
Materon, E.M.; Wong, A.; Klein, S.I.; Liu, J.; Sotomayor, M.D. Multi-walled carbon nanotubes modified screen-printed electrodes for cisplatin detection. Electrochim. Acta, 2015, 158, 271-276.
[119]
Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/Cu (OH) 2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C, 2012, 32(6), 1682-1689.
[120]
Phukon, P.; Radhapyari, K.; Konwar, B.K.; Khan, R. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin. Mater. Sci. Eng. C, 2014, 37, 314-320.
[121]
Barsan, M.M.; Toledo, C.T.; Brett, C.M. New electrode architectures based on poly (methylene green) and functionalized carbon nanotubes: characterization and application to detection of acetaminophen and pyridoxine. J. Electroanal. Chem., 2015, 736, 8-15.
[122]
D’Souza, O.J.; Mascarenhas, R.J.; Thomas, T.; Basavaraja, B.M.; Saxena, A.K.; Mukhopadhyay, K.; Roy, D. Platinum decorated multi-walled carbon nanotubes/Triton X-100 modified carbon paste electrode for the sensitive amperometric determination of Paracetamol. J. Electroanal. Chem., 2015, 739, 49-57.
[123]
Heidarimoghadam, R.; Farmany, A. Rapid determination of furosemide in drug and blood plasma of wrestlers by a carboxyl-MWCNT sensor. Mater. Sci. Eng. C, 2016, 58, 1242-1245.
[124]
Dorraji, P.S.; Jalali, F. Sensitive amperometric determination of methimazole based on the electrocatalytic effect of rutin/multi-walled carbon nanotube film. Bioelectrochemistry, 2015, 101, 66-74.
[125]
Savalia, R.; Chatterjee, S. Sensitive detection of brucine an anti-metastatic drug for hepatocellular carcinoma at carbon nanotubes–nafion composite based biosensor. Biosens. Bioelectron., 2017, 98, 371-377.
[126]
Chandra, P.; Zaidi, S.A.; Noh, H-B.; Shim, Y-B. Separation and simultaneous detection of anticancer drugs in a microfluidic device with an amperometric biosensor. Biosens. Bioelectron., 2011, 28(1), 326-332.
[127]
Habibi, B.; Jahanbakhshi, M. Silver nanoparticles/multi walled carbon nanotubes nanocomposite modified electrode: Voltammetric determination of clonazepam. Electrochim. Acta, 2014, 118, 10-17.
[128]
Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H. Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO 2–Zn 2 SnO 4 nanocomposites paste electrode. Appl. Surf. Sci., 2016, 363, 490-498.
[129]
Habibi, B.; Abazari, M.; Pournaghi-Azar, M.H. Simultaneous determination of codeine and caffeine using single-walled carbon nanotubes modified carbon-ceramic electrode. Colloids Surf. B Biointerfaces, 2014, 114, 89-95.
[130]
Arvand, M.; Gholizadeh, T.M. Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloids Surf. B Biointerfaces, 2013, 103, 84-93.
[131]
Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Gupta, V.K.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq., 2014, 197, 114-119.
[132]
Zhang, C-Y.; Johnson, L.W. Quantifying RNA- Peptide Interaction by Single-quantum Dot-Based Nanosensor: An Approach for Drug Screening. Anal. Chem., 2007, 79, 7775-7781.