[1]
Weiss A, Neuberg P, Philippot S, Erbacher P, Weill CO. Intracellular peptide delivery using amphiphilic lipid‐based formulations. Biotechnol Bioeng 2011; 108(10): 2477-87.
[2]
Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles. Int J Nanomedicine 2007; 2(4): 595.
[3]
Pisal DS, Kosloski MP, Balu‐Iyer SV. Delivery of therapeutic proteins. J Pharm Sci 2010; 99(6): 2557-75.
[4]
Rawat M, Singh D, Saraf S, Saraf S. Lipid carriers: A
versatile delivery vehicle for proteins and peptides. Yakugaku zasshi-. J Pharm Soc Jap 2008; 128(2): 269-80.
[5]
Chang HI, Yeh MK. Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 2012; 7: 49.
[6]
Semple SC, Chonn A, Cullis PR. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv Drug Deliv Rev 1998; 32(1-2): 3-17.
[7]
Mastrobattista E, Koning GA, Storm G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv Drug Deliv Rev 1999; 40(1-2): 103-27.
[8]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145.
[9]
Debotton N, Parnes M, Kadouche J, Benita S. Overcoming the formulation obstacles towards targeted chemotherapy: In vitro and in vivo evaluation of cytotoxic drug loaded immunonanoparticles. J Control Release 2008; 127(3): 219-30.
[10]
Laginha K, Mumbengegwi D, Allen T. Liposomes targeted via two different antibodies: assay, B-cell binding and cytotoxicity. Biochim Biophys Acta 2005; 1711(1): 25-32.
[11]
Lundberg BB, Griffiths G, Hansen HJ. Cellular association and cytotoxicity of anti-CD74-targeted lipid drug-carriers in B lymphoma cells. J Control Release 2004; 94(1): 155-61.
[12]
Park J, Kirpotin D, Hong K, et al. Tumor targeting using anti-her2 immunoliposomes. J Control Release 2001; 74(1-3): 95-113.
[13]
Morigaki K, Walde P. Fatty acid vesicles. Curr Opin Colloid Interface Sci 2007; 12(2): 75-80.
[14]
Teo YY, Misran M, Low KH, Zain SM. Effect of Unsaturation on the stability of C18 polyunsaturated fatty acids vesicles suspension in aqueous solution. Bull Korean Chem Soc 2011; 32(1): 59-64.
[15]
Tan HW, Misran M. Characterization of fatty acid liposome coated with low-molecular-weight chitosan. J Liposome Res 2012; 22(4): 329-35.
[16]
Teo YY, Misran M, Low KH. Effect of pH on physicochemical properties and encapsulation efficiency of PEGylated linolenic acid vesicles. J Chem 2012; 9(2): 729-38.
[17]
Teo YY, Misran M, Low KH. Effect of PEGylated lipid and Lecinol S-10 on physico-chemical properties and encapsulation efficiency of palmitoleate–palmitoleic acid vesicles. J Liposome Res 2014; 24(3): 241-8.
[18]
Gew LT, Misran M. Energetic mixing of anti‐SNAP25 on lipid monolayers: Degree of saturation of C18 fatty acids. Surf Interface Anal 2017; 49(5): 388-97.
[19]
Gew LT, Misran M. Interaction between C18 fatty acids and DOPE PEG2000 in Langmuir monolayers: Effect of degree of unsaturation. J Biol Phys 2017; 43(3): 397-414.
[20]
Hodel A. Molecules in focus: SNAP-25. Int J Biochem Cell Biol 1998; 30: 1069-73.
[21]
Rothman JE. The principle of membrane fusion in the cell (Nobel Lecture). Angew Chem Int Ed 2014; 53(47): 12676-94.
[22]
Torchilin V, Weissig V. Liposomes: A practical approach. US: Oxford University Press 2003.
[23]
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr Drug Deliv 2007; 4(4): 297-305.
[24]
Résibois-Grégoire A. Electron microscopic studies of metachromatic leucodystrophy. Acta Neuropathol 1967; 9(3): 244-53.
[25]
Working P, Newman M, Huang S, Mayhew E, Vaage J, Lasic D. Pharmacokinetics, biodistribution and therapeutic efficacy of doxorubicin encapsulated in Stealth® liposomes (Doxil®). J Liposome Res 1994; 4(1): 667-87.
[26]
Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003; 42(6): 463-78.
[27]
Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: A new frontier in cancer chemotherapy. Tumori 2003; 89(3): 237-49.
[28]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297.
[29]
Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics 2013; 5(4): 542-69.
[30]
Kroon J, Metselaar JM, Storm G, van der Pluijm G. Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat Rev 2014; 40(4): 578-84.
[31]
Yan F, Li L, Deng Z, et al. Paclitaxel-liposome–microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control Release 2013; 166(3): 246-55.
[32]
Suk VRE, Misran M. Development and characterization of DOPE PEG2000 coated oleic acid liposomes encapsulating anticancer drugs. J Surfactants Deterg 2017; 20(2): 321-9.
[33]
Luo D, Carter KA, Razi A, et al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 2016; 75: 193-202.
[34]
Zappavigna S, Luce A, Porru M, et al. Stealth liposomes for the delivery of zoledronic acid into tumors enhance the anticancer activity of the drug. Translational Med Rep 2017; 1(2): 6596.
[35]
Zhang XY, Zhang PY. Polymersomes in nanomedicine - A review. Curr Med Chem 2017; 13(2): 124-9.