[1]
Hsiang, Y.H.; Jiang, J.B.; Liu, L.F. Topoisomerase II-mediated DNA cleavage by amonafide and its structural analogs. Mol. Pharmacol., 1989, 36, 371-376.
[2]
Kaina, B. DNA damage-triggered apoptosis: Critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem. Pharmacol., 2003, 66(8), 1547-1554.
[3]
Hsiang, Y.H.; Jiang, J.B.; Liu, L.F. Naphthalimides induce G2 arrest through the ATM-activated Chk2-executed pathway in HCT116 cells. Neoplasia, 2009, 11(11), 1226-1234.
[4]
Rosell, R.; Carles, J.; Abad, A.; Ribelle, N.; Barnadas, A.; Benavides, A.; Miguel, M. Phase study of mitonafide in 120 hour continuous. Invest. New Drugs, 1992, 10(3), 171-175.
[5]
Díaz-Rubio, E.; Martín, M.; López-Vega, J.M.; Casado, A.; Benavides, A. Phase I study of mitonafide with a 3-day administration schedule: Early interruption due to severe central nervous system toxicity. Invest. New Drugs, 1994, 12(4), 277-281.
[6]
Miller, A.A.; Case, D.; Harmon, M.; Savage, P.; Lesser, G.; Hurd, D.; Melin, S.A.J. Phase I study of lenalidomide in solid tumors. J. Thorac. Oncol., 2007, 2(5), 445-449.
[7]
Felder, T.B.; McLean, M.A.; Vestal, M.L.; Lu, K.; Farquhar, D.; Legha, S.S.; Shah, R.; Newman, R.A. Pharmacokinetics and metabolism of the antitumor drug amonafide (NCS308847) in humans. Drug Metab. Dispos., 1987, 15(6), 773-778.
[8]
Taningher, M.; Malacarne, D.; Izzotti, A.; Ugolini, D.; Parodi, S. Drug metabolism polymorphisms as modulators of cancer susceptibility. Mutat. Res., 1999, 436(3), 227-261.
[9]
Innocenti, F.; Iyer, L.; Ratain, M.J. Pharmacogenetics of anticancer agents: Lessons from amonafide and irinotecan. Drug Metab. Dispos., 2001, 29(4), 596-600.
[10]
Ratain, M.J.; Mick, R.; Berezin, F.; Janisch, L.; Schilsky, R.L.; Vogelzang, N.J.; Lane, L.B. Phase I study of amonafide dosing based on acetylator phenotype. Cancer Res., 1993, 53(10), 2304-2308.
[11]
Norton, J.T.; Witschi, M.A.; Luong, L.; Kawamura, A.; Ghosh, S.; Stack, M.S.; Sim, E.; Avram, M.J.; Appella, D.H.; Huang, S. Synthesis and anticancer activities of 6-amino amonafide derivatives. Anticancer Drugs, 2008, 19(1), 23-36.
[12]
Braña, M.F.; Castellano, J.M.; Jimenez, A.; Llombart, A.; Rabadan, F.P.; Roldan, M.; Roldan, C.; Santos, A.; Vazquez, D. Synthesis, cytostatic activity and mode of action of a new series of imide derivatives of 3-nitro-1,8-naphthalic acid. Curr. Chemother., 1978, 2, 1216-1217.
[13]
Braña, M.F.; Castellano, J.M.; Roldán, C.M.; Santos, A.; Vazquez, D.; Jimenez, A. Synthesis and mode(s) of action of a new series of imide derivatives of 3-nitro-1,8-naphthalic acid. Cancer Chemother. Pharmacol., 1980, 4(1), 61-66.
[14]
Wang, K.; An, H.; Wang, Y.; Yan, X.; Li, R.; Chen, H.; Zhang, P.; Li, J.; Li, X.; Zhang, J. Synthesis, DNA binding properties and bioactivity of Naphthalimide Polyethylene Imine conjugates. Chinese J. Org. Chem., 2012, 32(4), 696-702.
[15]
Chen, Z.; Liang, X.; Zhang, H.; Xie, H.; Liu, J.; Xu, Y.; Zhu, W.; Wang, Y.; Wang, X.; Tan, S.; Kuang, D.; Qian, X. A new class of naphthalimide-based antitumor agents that inhibit topoisomerase II and induce lysosomal membrane permeabilization and apoptosis. J. Med. Chem., 2010, 53(6), 2589-2600.
[16]
Li, S.; Xu, S.; Tang, Y.; Ding, S.; Zhang, J.; Wang, S.; Zhou, G.; Zhou, C.; Li, X. Synthesis, anticancer activity and DNA-binding properties of novel 4-pyrazolyl-1,8-naphthalimide derivatives. Bioorg. Med. Chem. Lett., 2014, 24(2), 586-590.
[17]
Kokosza, K.; Andrei, G.; Schols, D.; Snoeck, R.; Piotrowska, D.G. Design, antiviral and cytostatic properties of isoxazolidine-containing amonafide analogues. Bioorg. Med. Chem., 2015, 23(13), 3135-3146.
[18]
Wang, K.; Wang, Y.; Yan, X.; Chen, H.; Ma, G.; Zhang, P.; Li, J.; Li, X.; Zhang, J. DNA binding and anticancer activity of naphthalimides with 4-hydroxyl-alkylamine side chains at different lengths. Bioorg. Med. Chem. Lett., 2012, 22(2), 937-941.
[19]
Zee-Cheng, R.K.; Cheng, C.C.N. -(Aminoalkyl)imide antineoplastic agents. Synthesis and biological activity. J. Med. Chem., 1985, 28(9), 1216-1222.
[20]
Khosravi, A.; Moradian, S.; Gharanjig, K.; Taromi, F.A. Synthesis and spectroscopic studies of some naphthalimide based disperse azo dyestuffs for the dyeing of polyester fibres. Dyes Pigments, 2006, 69(1-2), 79-92.
[21]
Qin, J.C.; Yan, J.; Wang, B.D.; Yang, Z.Y. Rhodamine-naphthalene conjugate as a novel ratiometric fluorescent probe for recognition of Al3+. Tetrahedron Lett., 2016, 57(17), 1935-1939.
[22]
Wells, C.H.J.; Wilson, J.A. Studies on nitroaromatic compounds. Part II. An electron spin resonance study of the radical anions of some nitronaphthalic anhydrides. J. Chem. Soc. B, 1971, 1588-1592.
[23]
Yuan, D.; Brown, R.G.; Hepworth, J.D.; Alexiou, M.S.; Tyman, J.H.P. The synthesis and fluorescence of novel N-substituted-1,8-naphthylimides. J. Heterocycl. Chem., 2008, 45(2), 397-404.
[24]
Berridge, M.V.; Tan, A.S.; McCoy, K.D.; Wang, R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica, 1996, 4(1), 15-19.
[25]
Lombardo, T.; Anaya, L.; Kornblihtt, L.; Blanco, G. In:Flow Cytometry - Recent Perspectives; Schmid, I., Ed.; Intech Open Science, 2012. Chapter 20, 393-420.
[26]
Van Quaquebeke, E.; Mahieu, T.; Dumont, P.; Dewelle, J.; Ribaucour, F.; Simon, G.; Sauvage, S.; Gaussin, J.F.; Tuti, J.; El Yazidi, M.; Van Vynckt, F.; Mijatovic, T.; Lefranc, F.; Darro, F.; Kiss, R. 2,2,2-Trichloro-N-(2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-5-ylcarbamoyl)acet-amide (UNBS3157), a novel nonhematotoxic naphthalimide deriv-ative with potent antitumor activity. J. Med. Chem., 2007, 50(17), 4122-4134.
[27]
Wang, K.R.; Qian, F.; Sun, Q.; Ma, C.L.; Rong, R.X.; Cao, Z.R.; Wang, X.M.; Li, X.L. Substituent effects on cytotoxic activity, spectroscopic property, and DNA binding property of naphthalimide derivatives. Chem. Biol. Drug Des., 2016, 87(5), 664-672.
[28]
Sharma, M.C.; Sharma, S.; Sharma, P.; Kumar, A. Comparative QSAR and pharmacophore modeling of substituted 2-[2′-(dimethylamino) ethyl]-1, 2-dihydro-3H-dibenz[de,h]isoquinoline-1,3-diones derivatives as anti-tumor activity. Med. Chem. Res., 2013, 22(12), 5772-5788.
[29]
Quintana-Espinoza, P.; Martín-Acosta, P.; Amesty, Á.; Martín-Rodríguez, P.; Lorenzo-Castrillejo, I.; Fernández-Pérez, L.; Machín, F.; Estévez-Braun, A. 5-Ethynylarylnaphthalimides as antitumor agents: Synthesis and biological evaluation. Bioorg. Med. Chem., 2017, 25(6), 19760-1983.
[30]
Johnson, C.A.; Hudson, G.A.; Hardebeck, L.K.E.; Jolley, E.A.; Ren, Y.; Lewis, M.; Znosko, B.M. Effect of intercalator substituent and nucleotide sequence on the stability of DNA- and RNA-naphthalimide complexes. Bioorg. Med. Chem., 2015, 23(13), 3586-3591.
[31]
Wang, K.R.; Qian, F.; Yang, Z.B.; An, H.W.; Han, D.; Chen, H.; Zhang, P.Z. Li., X.L. Anticancer activity and DNA binding of 4-alkylenediamines modified naphthalimide derivatives. Lett. Drug Des. Discov., 2014, 11(6), 742-748.
[32]
Pourpak, A.; Landowski, T.H.; Dorr, R.T. Ethonafide-induced cytotoxicity is mediated by topoisomerase II inhibition in prostate cancer cells. J. Pharmacol. Exp. Ther., 2007, 321(3), 1109-1117.