[1]
World Health OrganizationTB: A Global Emergency. WHO Report on the TB Epidemic; World Health Organization: Geneva, 1994.
[2]
World Health OrganizationWHO methods and data sources for country‐level causes of death 2000‐2015; World Health Organization: Geneva, 2017.
[3]
World Health OrganizationGlobal tuberculosis report 2017; World Health Organization: Geneva, 2017.
[4]
Pai, M.; Rodrigues, C. Management of latent tuberculosis infection: An evidence-based approach. Lung India, 2015, 32(3), 205-207.
[6]
Barry, C.E., III; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat. Rev. Microbiol., 2009, 7(12), 845-855.
[7]
World Health OrganizationGuidelines on the management of latent tuberculosis infection; World Health Organization: Geneva, 2015.
[8]
Campbell, I.A.; Bah-Sow, O. Pulmonary tuberculosis: Diagnosis and treatment. BMJ, 2006, 332(7551), 1194-1197.
[9]
Ormerod, L.P. Multidrug-resistant tuberculosis (MDR-TB): Epidemiology, prevention and treatment. Br. Med. Bull., 2005, 73-74, 17-24.
[10]
World Health OrganizationGlobal tuberculosis report 2016; World Health Organization: Geneva, 2016.
[11]
World Health OrganizationGlobal tuberculosis report 2015; World Health Organization: Geneva, 2015.
[12]
World Health OrganizationA guide to monitoring and evaluation for collaborative TBHIV activities; World Health Organization: Geneva, 2015.
[13]
World Health OrganizationIntegrating collaborative TB and HIV services within a comprehensive package of care for people who inject drugs; World Health Organization: Geneva, 2016.
[14]
Gunneberg, C.; Reid, A.; Williams, B.G.; Floyd, K.; Nunn, P. Global monitoring of collaborative TB-HIV activities. Int. J. Tuberc. Lung Dis., 2008, 12(3)(Suppl. 1), 2-7.
[15]
World Health OrganizationCollaborative framework for care and control of tuberculosis and diabetes; World Health Organization: Geneva, 2011.
[16]
World Health OrganizationCompanion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis; World Health Organization: Geneva, 2014.
[17]
Jensen, P.A.; Lambert, L.A.; Iademarco, M.F.; Ridzon, R. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings 2005. MMWR Recomm. Rep., 2005, 54(Rr-17), 1-141.
[18]
World Health OrganizationEarly detection of Tuberculosis. An overview of approaches, guidelines and tools; World Health Organization: Geneva, 2011.
[19]
World Health OrganizationThe worldwide magnitude of protein-energy malnutrition: an overview from the World Health Organisation. Provisional guidelines for the diagnosis and classification of the EPI target diseases for primary health care, surveillance and special studies; World Health Organization: Geneva, 1983.
[20]
World Health OrganizationChest radiography in tuberculosis detection; World Health Organization: Geneva, 2016.
[21]
Hina, K.; Khalid, S.; Akbar, M.U. A review on automatic tuberculosis screening using chest radiographs Proceeding of the 2016 Sixth International Conference on Innovative Computing Technology (INTECH), 2016, pp. 285-289.
[22]
Kaguthi, G.; Nduba, V.; Nyokabi, J.; Onchiri, F.; Gie, R.; Borgdorff, M. Chest radiographs for pediatric TB diagnosis: Interrater agreement and utility. Interdiscip. Perspect. Infect. Dis., 2014, 2014291841
[23]
Swingler, G.H.; du Toit, G.; Andronikou, S.; van der Merwe, L.; Zar, H.J. Diagnostic accuracy of chest radiography in detecting mediastinal lymphadenopathy in suspected pulmonary tuberculosis. Arch. Dis. Child., 2005, 90(11), 1153-1156.
[24]
Jeong, Y.J.; Lee, K.S. Pulmonary tuberculosis: Up-to-date imaging and management. AJR Am. J. Roentgenol., 2008, 191(3), 834-844.
[25]
Im, J.G.; Itoh, H.; Shim, Y.S.; Lee, J.H.; Ahn, J.; Han, M.C.; Noma, S. Pulmonary tuberculosis: CT findings--early active disease and sequential change with antituberculous therapy. Radiology, 1993, 186(3), 653-660.
[26]
Lee, J.Y.; Lee, K.S.; Jung, K.J.; Han, J.; Kwon, O.J.; Kim, J.; Kim, T.S. Pulmonary tuberculosis: CT and pathologic correlation. J. Comput. Assist. Tomogr., 2000, 24(5), 691-698.
[27]
Burrill, J.; Williams, C.J.; Bain, G.; Conder, G.; Hine, A.L.; Misra, R.R. Tuberculosis: a radiologic review. Radiographics, 2007, 27(5), 1255-1273.
[28]
Nachiappan, A.C.; Rahbar, K.; Shi, X.; Guy, E.S.; Mortani Barbosa, E.J., Jr; Shroff, G.S.; Ocazionez, D.; Schlesinger, A.E.; Katz, S.I.; Hammer, M.M. Pulmonary tuberculosis: Role of radiology in diagnosis and management. Radiographics, 2017, 37(1), 52-72.
[29]
Caulfield, A.J.; Wengenack, N.L. Diagnosis of active tuberculosis disease: From microscopy to molecular techniques. J. Clin. Tuberc. Other Mycobact. Dis., 2016, 4, 33-43.
[30]
Abdelaziz, M.M.; Bakr, W.M.; Hussien, S.M.; Amine, A.E. Diagnosis of pulmonary tuberculosis using Ziehl-Neelsen stain or cold staining techniques? J. Egypt. Public Health Assoc., 2016, 91(1), 39-43.
[31]
Weldu, Y.; Asrat, D.; Woldeamanuel, Y.; Hailesilasie, A. Comparative evaluation of a two-reagent cold stain method with Ziehl-Nelseen method for pulmonary tuberculosis diagnosis. BMC Res. Notes, 2013, 6, 323-323.
[32]
Goyal, R.; Kumar, A. A Comparison of Ziehl-Neelsen staining and fluorescent microscopy for diagnosis of pulmonary Tuberculosis. J. Dent. Med. Sci., 2013, 8, 5-8.
[33]
Hooja, S.; Pal, N.; Malhotra, B.; Goyal, S.; Kumar, V.; Vyas, L. Comparison of Ziehl Neelsen & Auramine O staining methods on direct and concentrated smears in clinical specimens. Indian J. Tuberc., 2011, 58(2), 72-76.
[34]
Marais, B.J.; Brittle, W.; Painczyk, K.; Hesseling, A.C.; Beyers, N.; Wasserman, E.; van Soolingen, D.; Warren, R.M. Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum. Clin. Infect. Dis., 2008, 47(2), 203-207.
[35]
World Health OrganizationFluorescent light-emitting diode (LED) microscopy for diagnosis of tuberculosis; World Health Organization: Geneva, 2011.
[36]
World Health OrganizationSystematic screening for active tuberculosis: Principles and recommendations; World Health Organization: Geneva, 2013.
[37]
Singhal, R.; Myneedu, V.P. Microscopy as a diagnostic tool in pulmonary tuberculosis. Int. J. Mycobacteriol., 2015, 4(1), 1-6.
[38]
Matee, M.; Mtei, L.; Lounasvaara, T.; Wieland-Alter, W.; Waddell, R.; Lyimo, J.; Bakari, M.; Pallangyo, K.; von Reyn, C.F. Sputum microscopy for the diagnosis of HIV-associated pulmonary tuberculosis in Tanzania. BMC Public Health, 2008, 8, 68-68.
[39]
Cattamanchi, A.; Dowdy, D.W.; Davis, J.L.; Worodria, W.; Yoo, S.; Joloba, M.; Matovu, J.; Hopewell, P.C.; Huang, L. Sensitivity of direct versus concentrated sputum smear microscopy in HIV-infected patients suspected of having pulmonary tuberculosis. BMC Infect. Dis., 2009, 9, 53.
[40]
Centers for Disease Control and PreventionCore curriculum on Tuberculosis: What the clinician should know; Centers for Disease Control and Prevention: Atlanta, 2013.
[41]
National Collaborating Centre for ChronicC. and N. Centre for Clinical Practice at. Tuberculosis: Clinical diagnosis and management of tuberculosis, and measures for its prevention and control; National Institute for Health and Clinical Excellence: London, 2011.
[42]
Dinnes, J.; Deeks, J.; Kunst, H.; Gibson, A.; Cummins, E.; Waugh, N.; Drobniewski, F.; Lalvani, A. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol. Assess., 2007, 11(3), 1-196.
[43]
Sorlozano, A.; Soria, I.; Roman, J.; Huertas, P.; Soto, M.J.; Piedrola, G.; Gutierrez, J. Comparative evaluation of three culture methods for the isolation of mycobacteria from clinical samples. J. Microbiol. Biotechnol., 2009, 19(10), 1259-1264.
[44]
Rageade, F.; Picot, N.; Blanc-Michaud, A.; Chatellier, S.; Mirande, C.; Fortin, E.; van Belkum, A. Performance of solid and liquid culture media for the detection of Mycobacterium tuberculosis in clinical materials: Meta-analysis of recent studies. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(6), 867-870.
[45]
Cruciani, M.; Scarparo, C.; Malena, M.; Bosco, O.; Serpelloni, G.; Mengoli, C. Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J. Clin. Microbiol., 2004, 42(5), 2321-2325.
[46]
Pfyffer, G.E.; Wittwer, F. Incubation time of mycobacterial cultures: How long is long enough to issue a final negative report to the clinician? J. Clin. Microbiol., 2012, 50(12), 4188-4189.
[47]
Ogwang, S.; Mubiri, P.; Bark, C.M.; Joloba, M.L.; Boom, W.H.; Johnson, J.L. Incubation time of Mycobacterium tuberculosis complex sputum cultures in BACTEC MGIT 960: 4weeks of negative culture is enough for physicians to consider alternative diagnoses. Diagn. Microbiol. Infect. Dis., 2015, 83(2), 162-164.
[48]
Essa, S.A.; Abdel-Samea, S.A-R.; Ismaeil, Y.M.; Mohammad, A.A. Comparative study between using Lowenstein Jensen and Bio-FM media in identification of Mycobacterium tuberculosis. Egypt. J. Chest Dis. Tuberc., 2013, 62, 249-255.
[49]
Kobayashi, M.; Ray, S.M.; Hanfelt, J.; Wang, Y.F. Diagnosis of tuberculosis by using a nucleic acid amplification test in an urban population with high HIV prevalence in the United States. PLoS One, 2014, 9(10)e107552
[50]
Coll, P.; Garrigó, M.; Moreno, C.; Martí, N. Routine use of Gen-Probe amplified Mycobacterium tuberculosis Direct (MTD) test for detection of Mycobacterium tuberculosis with smear-positive and smear-negative specimens. Int. J. Tuberc. Lung Dis., 2003, 7(9), 886-891.
[51]
Moore, D.F.; Guzman, J.A.; Mikhail, L.T. Reduction in turnaround time for laboratory diagnosis of pulmonary tuberculosis by routine use of a nucleic acid amplification test. Diagn. Microbiol. Infect. Dis., 2005, 52(3), 247-254.
[52]
Smith, M.B.; Bergmann, J.S.; Harris, S.L.; Woods, G.L. Evaluation of the Roche AMPLICOR MTB assay for the detection of Mycobacterium tuberculosis in sputum specimens from prison inmates. Diagn. Microbiol. Infect. Dis., 1997, 27(4), 113-116.
[53]
Maugein, J.; Fourche, J.; Vacher, S.; Grimond, C.; Bebear, C. Evaluation of the BDProbeTec ET DTB assay(1) for direct detection of Mycobacterium tuberculosis complex from clinical samples. Diagn. Microbiol. Infect. Dis., 2002, 44(2), 151-155.
[54]
Campos, M.; Quartin, A.; Mendes, E.; Abreu, A.; Gurevich, S.; Echarte, L.; Ferreira, T.; Cleary, T.; Hollender, E.; Ashkin, D. Feasibility of shortening respiratory isolation with a single sputum nucleic acid amplification test. Am. J. Respir. Crit. Care Med., 2008, 178(3), 300-305.
[55]
Pfyffer, G.E.; Kissling, P.; Jahn, E.M.; Welscher, H.M.; Salfinger, M.; Weber, R. Diagnostic performance of amplified Mycobacterium tuberculosis direct test with cerebrospinal fluid, other nonrespiratory, and respiratory specimens. J. Clin. Microbiol., 1996, 34(4), 834-841.
[56]
Laraque, F.; Griggs, A.; Slopen, M.; Munsiff, S.S. Performance of nucleic acid amplification tests for diagnosis of tuberculosis in a large urban setting. Clin. Infect. Dis., 2009, 49(1), 46-54.
[57]
Noordhoek, G.T.; Mulder, S.; Wallace, P.; van Loon, A.M. Multicentre quality control study for detection of Mycobacterium tuberculosis in clinical samples by nucleic amplification methods. Clin. Microbiol. Infect., 2004, 10(4), 295-301.
[58]
Altez-Fernandez, C.; Ortiz, V.; Mirzazadeh, M.; Zegarra, L.; Seas, C.; Ugarte-Gil, C. Diagnostic accuracy of nucleic acid amplification tests (NAATs) in urine for genitourinary tuberculosis: A systematic review and meta-analysis. BMC Infect. Dis., 2017, 17(1), 390.
[59]
World Health OrganizationThe use of a commercial loop-mediated isothermal amplification assay (TB-LAMP) for the detection of tuberculosis; World Health Organization: Geneva, 2013.
[60]
World Health OrganizationThe use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis; World Health Organization: Geneva, 2016.
[61]
World Health OrganizationAutomated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert TB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children: Policy update; World Health Organization: Geneva, 2013.
[62]
Kim, C-H.; Woo, H.; Hyun, I.G.; Kim, C.; Choi, J-H.; Jang, S-H.; Park, S.M.; Kim, D-G.; Lee, M.G.; Jung, K-S.; Hyun, J.; Kim, H.S. A comparison between the efficiency of the Xpert MTB/RIF assay and nested PCR in identifying Mycobacterium tuberculosis during routine clinical practice. J. Thorac. Dis., 2014, 6(6), 625-631.
[63]
World Health Organization. WHO Meeting Report of a Technical Expert Consultation: Non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF, World Health Organization: Geneva,2017.
[64]
Singh, B.K.; Sharma, S.K.; Sharma, R.; Sreenivas, V.; Myneedu, V.P.; Kohli, M.; Bhasin, D.; Sarin, S. Diagnostic utility of a line probe assay for multidrug resistant-TB in smear-negative pulmonary tuberculosis. PLoS One, 2017, 12(8)e0182988
[65]
Morgan, M.; Kalantri, S.; Flores, L.; Pai, M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: A systematic review and meta-analysis. BMC Infect. Dis., 2005, 5, 62.
[66]
Ling, D.I.; Zwerling, A.A.; Pai, M. Rapid diagnosis of drug-resistant TB using line probe assays: From evidence to policy. Expert Rev. Respir. Med., 2008, 2(5), 583-588.
[67]
Van Rie, A.; De Vos, M. The role of line probe assays in the Xpert MTB/RIF ultra era. J. Lab. Precis. Med., 2017, 2, 32.
[68]
Nathavitharana, R.R.; Cudahy, P.G.T.; Schumacher, S.G.; Steingart, K.R.; Pai, M.; Denkinger, C.M. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: A systematic review and meta-analysis. Eur. Respir. J., 2017, 49(1)1601075
[69]
Yacoob, F.L.; Philomina Jose, B.; Karunakaran Lelitha, S.D.; Sreenivasan, S. Primary multidrug resistant Tuberculosis and utility of line probe assay for its detection in smear-positive sputum samples in a tertiary care hospital in south India. J. Pathogens, 2016, 20166235618
[70]
Ayub, A.; Yale, S.H.; Reed, K.D.; Nasser, R.M.; Gilbert, S.R. Testing for latent tuberculosis. Clin. Med. Res., 2004, 2(3), 191-194.
[71]
Yang, H.; Kruh-Garcia, N.A.; Dobos, K.M. Purified protein derivatives of tuberculin--past, present, and future. FEMS Immunol. Med. Microbiol., 2012, 66(3), 273-280.
[72]
Pai, M.; Denkinger, C.M.; Kik, S.V.; Rangaka, M.X.; Zwerling, A.; Oxlade, O.; Metcalfe, J.Z.; Cattamanchi, A.; Dowdy, D.W.; Dheda, K.; Banaei, N. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin. Microbiol. Rev., 2014, 27(1), 3-20.
[73]
Redelman-Sidi, G.; Sepkowitz, K.A. IFN-γ release assays in the diagnosis of latent tuberculosis infection among immunocompromised adults. Am. J. Respir. Crit. Care Med., 2013, 188(4), 422-431.
[74]
Menzies, R.; Vissandjee, B. Effect of bacille Calmette-Guérin vaccination on tuberculin reactivity. Am. Rev. Respir. Dis., 1992, 145(3), 621-625.
[75]
Kobashi, Y.; Shimizu, H.; Ohue, Y.; Mouri, K.; Obase, Y.; Miyashita, N.; Oka, M. False negative results of QuantiFERON TB-2G test in patients with active tuberculosis. Jpn. J. Infect. Dis., 2009, 62(4), 300-302.
[76]
Ewer, K.; Deeks, J.; Alvarez, L.; Bryant, G.; Waller, S.; Andersen, P.; Monk, P.; Lalvani, A. Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet, 2003, 361(9364), 1168-1173.
[77]
Kunst, H. Diagnosis of latent tuberculosis infection: The potential role of new technologies. Respir. Med., 2006, 100(12), 2098-2106.
[78]
World Health OrganizationUse of tuberculosis interferon-gamma release assays (IGRAs) in low- and middle-income countries; World Health Organization: Geneva, 2011.
[79]
Chan, E.D.; Heifets, L.; Iseman, M.D. Immunologic diagnosis of tuberculosis: A review. Tuber. Lung Dis., 2000, 80(3), 131-140.
[80]
Wang, S.; Wu, J.; Chen, J.; Gao, Y.; Zhang, S.; Zhou, Z.; Huang, H.; Shao, L.; Jin, J.; Zhang, Y.; Zhang, W. Evaluation of Mycobacterium tuberculosis-specific antibody responses for the discrimination of active and latent tuberculosis infection. Int. J. Infect. Dis., 2018, 70, 1-9.
[81]
Welch, R.J.; Lawless, K.M.; Litwin, C.M. Antituberculosis IgG antibodies as a marker of active Mycobacterium tuberculosis disease. Clin. Vaccine Immunol., 2012, 19(4), 522-526.
[82]
Raja, A.; Ranganathan, U.D.; Bethunaickan, R. Improved diagnosis of pulmonary tuberculosis by detection of antibodies against multiple Mycobacterium tuberculosis antigens. Diagn. Microbiol. Infect. Dis., 2008, 60(4), 361-368.
[83]
Kadival, G.V.; Kameswaran, M.; Ray, M.K. Radioimmunoassay antibody detection in pulmonary tuberculosis. Ind. J. Tub, 2000, 47, 97-100.
[84]
Chandramuki, A.; Lyashchenko, K.; Kumari, H.B.; Khanna, N.; Brusasca, P.; Gourie-Devi, M.; Satishchandra, P.; Shankar, S.K.; Ravi, V.; Alcabes, P.; Kanaujia, G.V.; Gennaro, M.L. Detection of antibody to Mycobacterium tuberculosis protein antigens in the cerebrospinal fluid of patients with tuberculous meningitis. J. Infect. Dis., 2002, 186(5), 678-683.
[85]
Al-Zamel, F.A. Detection and diagnosis of Mycobacterium tuberculosis. Expert Rev. Anti Infect. Ther., 2009, 7(9), 1099-1108.
[86]
Shen, C-Y.; Hsieh, S-C.; Yu, C-L.; Wang, J-Y.; Lee, L-N.; Yu, C-J. Autoantibody prevalence in active tuberculosis: Reactive or pathognomonic? BMJ Open, 2013, 3(7)e002665
[87]
Imaz, M.S.; Zerbini, E. Antibody response to culture filtrate antigens of Mycobacterium tuberculosis during and after treatment of tuberculosis patients. Int. J. Tuberc. Lung Dis., 2000, 4(6), 562-569.
[88]
Goodridge, A.; Zhang, T.; Miyata, T.; Lu, S.; Riley, L.W. Antiphospholipid IgM antibody response in acute and chronic Mycobacterium tuberculosis mouse infection model. Clin. Respir. J., 2014, 8(2), 137-144.
[89]
Shete, P.B.; Ravindran, R.; Chang, E.; Worodria, W.; Chaisson, L.H.; Andama, A.; Davis, J.L.; Luciw, P.A.; Huang, L.; Khan, I.H.; Cattamanchi, A. Evaluation of antibody responses to panels of M. tuberculosis antigens as a screening tool for active tuberculosis in Uganda. PLoS One, 2017, 12(8)e0180122
[90]
Ravindran, R.; Krishnan, V.V.; Dhawan, R.; Wunderlich, M.L.; Lerche, N.W.; Flynn, J.L.; Luciw, P.A.; Khan, I.H. Plasma antibody profiles in non-human primate tuberculosis. J. Med. Primatol., 2014, 43(2), 59-71.
[91]
Flores, L.L.; Steingart, K.R.; Dendukuri, N.; Schiller, I.; Minion, J.; Pai, M.; Ramsay, A.; Henry, M.; Laal, S. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin. Vaccine Immunol., 2011, 18(10), 1616-1627.
[92]
World Health OrganizationThe use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV; World Health Organization: Geneva, 2015.
[93]
Wang, X.; Chen, S.; Xu, Y.; Zheng, H.; Xiao, T.; Li, Y.; Chen, X.; Huang, M.; Zhang, H.; Fang, X.; Jiang, Y.; Li, M.; Liu, H.; Wan, K. Identification and evaluation of the novel immunodominant antigen Rv2351c from Mycobacterium tuberculosis. Emerg. Microbes Infect., 2017, 6(6)e48
[94]
Luo, L.; Zhu, L.; Yue, J.; Liu, J.; Liu, G.; Zhang, X.; Wang, H.; Xu, Y. Antigens Rv0310c and Rv1255c are promising novel biomarkers for the diagnosis of Mycobacterium tuberculosis infection. Emerg. Microbes Infect., 2017, 6(7)e64
[95]
Aliannejad, R.; Bahrmand, A.; Abtahi, H.; Seifi, M.; Safavi, E.; Abdolrahimi, F.; Shahriaran, S. Accuracy of a new rapid antigen detection test for pulmonary tuberculosis. Iran. J. Microbiol., 2016, 8(4), 238-242.
[96]
Shen, G-H.; Chiou, C-S.; Hu, S-T.; Wu, K-M.; Chen, J-H. Rapid identification of the Mycobacterium tuberculosis complex by combining the ESAT-6/CFP-10 immunochromatographic assay and smear morphology. J. Clin. Microbiol., 2011, 49(3), 902-907.
[97]
Fox, A.; J., Jeffries D.; C Hill, P.; Hammond, A.S.; Lugos, M.; Jackson-Sillah, D.; Donkor, S.; Owiafe, P.; McAdam, K.; H Brookes, R. ESAT-6 and CFP-10 can be combined to reduce the cost of testing for Mycobacterium tuberculosis infection, but CFP-10 responses associate with active disease. Trans. R. Soc. Trop. Med. Hyg., 2007, 101(7), 691-698.
[98]
Turbawaty, D.K.; Sugianli, A.K.; Soeroto, A.Y.; Setiabudiawan, B.; Parwati, I. Comparison of the performance of urinary Mycobacterium tuberculosis antigens cocktail (ESAT6, CFP10 and MPT64) with culture and microscopy in pulmonary Tuberculosis patients. Int. J. Microbiol., 2017, 20173259329
[99]
Gey van Pittius, N.C.; Warren, R.M.; van Helden, P.D. ESAT-6 and CFP-10: What is the diagnosis? Infect. Immun., 2002, 70(11), 6509-6510.
[100]
Skjøt, R.L.V.; Brock, I.; Arend, S.M.; Munk, M.E.; Theisen, M.; Ottenhoff, T.H.M.; Andersen, P. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect. Immun., 2002, 70(10), 5446-5453.
[101]
Wood, R.; Racow, K.; Bekker, L-G.; Middelkoop, K.; Vogt, M.; Kreiswirth, B.N.; Lawn, S.D. Lipoarabinomannan in urine during tuberculosis treatment: association with host and pathogen factors and mycobacteriuria. BMC Infect. Dis., 2012, 12, 47-47.
[102]
Torati, S.R.; Reddy, V.; Yoon, S.S.; Kim, C. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform. Biosens. Bioelectron., 2016, 78, 483-488.
[103]
Diouani, M.F.; Ouerghi, O.; Refai, A.; Belgacem, K.; Tlili, C.; Laouini, D.; Essafi, M. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Mater. Sci. Eng. C, 2017, 74, 465-470.
[104]
Zhou, B.; Zhu, M.; Qiu, Y.; Yang, P. Novel electrochemiluminescence-sensing platform for the precise analysis of multiple latent tuberculosis infection markers. ACS Appl. Mater. Interfaces, 2017, 9(22), 18493-18500.
[105]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[106]
Liu, S.; Yuan, H.; Bai, H.; Zhang, P.; Lv, F.; Liu, L.; Dai, Z.; Bao, J.; Wang, S. Electrochemiluminescence for electric-driven antibacterial therapeutics. J. Am. Chem. Soc., 2018, 140(6), 2284-2291.
[107]
Tran, V.T.; Kim, J.; Tufa, L.T.; Oh, S.; Kwon, J.; Lee, J. Magnetoplasmonic nanomaterials for biosensing/imaging and in vitro/in vivo biousability. Anal. Chem., 2017, 90(1), 225-239.
[108]
Thakur, H.; Kaur, N.; Sareen, D.; Prabhakar, N. Electrochemical determination of M. tuberculosis antigen based on Poly(3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform. Talanta, 2017, 171, 115-123.
[109]
Bai, L.; Chen, Y.; Bai, Y.; Chen, Y.; Zhou, J.; Huang, A. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials, 2017, 133, 11-19.
[110]
Wang, L.; Leng, C.; Tang, S.; Lei, J.; Ju, H. Enzyme-free signal amplification for electrochemical detection of Mycobacterium lipoarabinomannan antibody on a disposable chip. Biosens. Bioelectron., 2012, 38(1), 421-424.
[111]
Barreda-García, S.; González-Álvarez, M.J.; de-Los-Santos-Álvarez, N.; Palacios-Gutiérrez, J.J.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosens. Bioelectron., 2015, 68, 122-128.
[112]
Ng, B.Y.; Xiao, W.; West, N.P.; Wee, E.J.; Wang, Y.; Trau, M. Rapid, single-cell electrochemical detection of Mycobacterium tuberculosis using colloidal gold nanoparticles. Anal. Chem., 2015, 87(20), 10613-10618.
[113]
Zaid, M.H.M.; Abdullah, J.; Yusof, N.A.; Sulaiman, Y.; Wasoh, H.; Noh, M.F.M.; Issa, R. PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sens. Actuators B Chem., 2017, 241, 1024-1034.
[114]
Wu, M-S.; Liu, Z.; Shi, H-W.; Chen, H-Y.; Xu, J-J. Visual electrochemiluminescence detection of cancer biomarkers on a closed bipolar electrode array chip. Anal. Chem., 2015, 87(1), 530-537.
[115]
Su, M.; Liu, H.; Ge, S.; Ren, N.; Ding, L.; Yu, J.; Song, X. An electrochemiluminescence lab-on-paper device for sensitive detection of two antigens at the MCF-7 cell surface based on porous bimetallic AuPd nanoparticles. RSC Advances, 2016, 6, 16500-16506.
[116]
Zhou, B.; Zhu, M.; Hao, Y.; Yang, P. Potential-resolved electrochemiluminescence for simultaneous determination of triple latent tuberculosis infection markers. ACS Appl. Mater. Interfaces, 2017, 9(36), 30536-30542.
[117]
Wallis, R.S.; Pai, M.; Menzies, D.; Doherty, T.M.; Walzl, G.; Perkins, M.D.; Zumla, A. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet, 2010, 375(9729), 1920-1937.
[118]
Steingart, K.R.; Dendukuri, N.; Henry, M.; Schiller, I.; Nahid, P.; Hopewell, P.C.; Ramsay, A.; Pai, M.; Laal, S. Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: A meta-analysis. Clin. Vaccine Immunol., 2009, 16(2), 260-276.
[119]
Toh, S.Y.; Citartan, M.; Gopinath, S.C.; Tang, T-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron., 2015, 64, 392-403.
[120]
Bunka, D.H.; Stockley, P.G. Aptamers come of age - at last. Nat. Rev. Microbiol., 2006, 4(8), 588-596.
[121]
Kanayeva, D.; Bekniyazov, I.; Ashikbayeva, Z. Detection of tuberculosis using biosensors: Recent progress and future trends. Sens Transducers, 2013, 149, 166-173.
[122]
Ng, B.Y.; Wee, E.J.; West, N.P.; Trau, M. Naked-eye colorimetric and electrochemical detection of Mycobacterium tuberculosis - toward rapid screening for active case finding. ACS Sens., 2015, 1, 173-178.
[123]
Abdalhai, M.H.; Fernandes, A.M.; Bashari, M.; Ji, J.; He, Q.; Sun, X. Rapid and sensitive detection of foodborne pathogenic bacteria (Staphylococcus aureus) using an electrochemical DNA genomic biosensor and its application in fresh beef. J. Agric. Food Chem., 2014, 62(52), 12659-12667.
[124]
Kim, E.J.; Kim, E.B.; Lee, S.W.; Cheon, S.A.; Kim, H-J.; Lee, J.; Lee, M-K.; Ko, S.; Park, T.J. An easy and sensitive sandwich assay for detection of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold nanorods. Biosens. Bioelectron., 2017, 87, 150-156.
[125]
Wang, L.; Jin, Y.; Deng, J.; Chen, G. Gold nanorods-based FRET assay for sensitive detection of Pb2+ using 8-17DNAzyme. Analyst (Lond.), 2011, 136(24), 5169-5174.
[126]
Kim, J.; Hong, S.C.; Hong, J.C.; Chang, C.L.; Park, T.J.; Kim, H-J.; Lee, J. Clinical immunosensing of tuberculosis CFP-10 antigen in urine using interferometric optical fiber array. Sens. Actuators B Chem., 2015, 216, 184-191.
[127]
Kim, J.; Lee, J.; Lee, K-I.; Park, T.J.; Kim, H-J.; Lee, J. Rapid monitoring of CFP-10 during culture of Mycobacterium tuberculosis by using a magnetophoretic immunoassay. Sens. Actuators B Chem., 2013, 177, 327-333.
[128]
Kim, J.; Lee, K-S.; Kim, E.B.; Paik, S.; Chang, C.L.; Park, T.J.; Kim, H-J.; Lee, J. Early detection of the growth of Mycobacterium tuberculosis using magnetophoretic immunoassay in liquid culture. Biosens. Bioelectron., 2017, 96, 68-76.
[129]
Alnour, T.M.S. Smear microscopy as a diagnostic tool of tuberculosis: Review of smear negative cases, frequency, risk factors, and prevention criteria. Indian J. Tuberc., 2018, 65(3), 190-194.
[130]
Nurwidya, F.; Handayani, D.; Burhan, E.; Yunus, F. Molecular diagnosis of tuberculosis. Chonnam Med. J., 2018, 54(1), 1-9.
[131]
Golichenari, B.; Nosrati, R.; Farokhi-Fard, A.; Abnous, K.; Vaziri, F.; Behravan, J. Nano-biosensing approaches on tuberculosis: Defy of aptamers. Biosens. Bioelectron., 2018, 117, 319-331.
[132]
Gupta, S.; Kakkar, V. Recent technological advancements in tuberculosis diagnostics - A review. Biosens. Bioelectron., 2018, 115, 14-29.
[133]
Sulis, G.; Centis, R.; Sotgiu, G.; D’Ambrosio, L.; Pontali, E.; Spanevello, A.; Matteelli, A.; Zumla, A.; Migliori, G.B. Recent developments in the diagnosis and management of tuberculosis. NPJ Prim. Care Respir. Med., 2016, 26, 16078.
[134]
García-Basteiro, A.L.; DiNardo, A.; Saavedra, B.; Silva, D.R.; Palmero, D.; Gegia, M.; Migliori, G.B.; Duarte, R.; Mambuque, E.; Centis, R.; Cuevas, L.E.; Izco, S.; Theron, G. Point of care diagnostics for tuberculosis. Pulmonology, 2018, 24(2), 73-85.
[135]
Xu, K.; Liang, C.Z.; Ding, X.; Hu, H.; Liu, S.; Nurmik, M.; Bi, S.; Hu, F.; Ji, Z.; Ren, J.; Yang, S.; Yang, Y.; Li, L. Nanomaterials in the prevention, diagnosis, and treatment of Mycobacterium tuberculosis infections. Adv. Healthc. Mater., 2017, 71700509
[136]
El-Samadony, H.; Althani, A.; Tageldin, M.A.; Azzazy, H.M.E. Nanodiagnostics for tuberculosis detection. Expert Rev. Mol. Diagn., 2017, 17(5), 427-443.
[137]
World Health OrganizationEthics Guidance for The Implementation of The End TB Strategy; World Health Organization: Geneva, 2017.