[1]
Hamelryck, T.; Kent, J.T.; Krogh, A. Sampling realistic protein conformations using local structural bias. PLOS Comput. Biol., 2006, 2, e131.
[2]
Rost, B.; Schneider, R.; Sander, C. Protein fold recognition by prediction-based threading. J. Mol. Biol., 1997, 270, 471-480.
[3]
Robson, B.; Suzuki, E. Conformational properties of amino acid residues in globular proteins. J. Mol. Biol., 1976, 107, 327-356.
[4]
Schwartz, R.M.; Dayhoff, M.O. In: Evolution of protein molecules, Ed. Matsubara, H.; Yamanaka, T.; Japan Sci. Soc., Press, Tokyo, 1978.
[5]
Garnier, J.; Osguthorpe, D.J.; Robson, B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol., 1978, 120, 97-120.
[6]
Chou, P.Y.; Fasman, G.D. Prediction of protein conformation. Biochemistry, 1974, 13, 222-245.
[7]
Chou, P.Y.; Fasman, G.D. Empirical predictions of protein conformation. Annu. Rev. Biochem., 1978, 47, 251-276.
[8]
Kouza, M.; Faraggi, E.; Kolinski, A.; Kloczkowski, A. The GOR method of protein secondary structure prediction and its application as a protein aggregation prediction tool. Methods Mol. Biol., 2017, 1484, 7-24.
[9]
Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983, 22, 2577-2637.
[10]
Chen, H.; Gu, F.; Huang, Z. Improved Chou-Fasman method for protein secondary structure prediction. BMC Bioinformatics, 2006, 7(Suppl. 4), S14.
[11]
Rashid, S.; Saraswathi, S.; Kloczkowski, A.; Sundaram, S.; Kolinski, A. Protein secondary structure prediction using a small training set (compact model) combined with a Complex-valued neural network approach. BMC Bioinformatics, 2016, 17, 362.
[12]
Meng, F.; Kurgan, L. Computational prediction of protein secondary structure from sequence. Curr. Protoc. Protein Sci., 2016, 86, 2.3.1-2.3.10.
[13]
Yang, Y.; Heffernan, R.; Paliwal, K.; Lyons, J.; Dehzangi, A.; Sharma, A.; Wang, J.; Sattar, A.; Zhou, Y. SPIDER2: A package to predict secondary structure, accessible surface area, and main-chain torsional angles by deep neural networks. Methods Mol. Biol., 2017, 1484, 55-63.
[14]
Faraggi, E.; Kloczkowski, A. Accurate prediction of one-dimensional protein structure features using SPINE-X. Methods Mol. Biol., 2017, 1484, 45-53.
[15]
Panja, A.S.; Bandopadhyay, B.; Maiti, S. Protein thermostability is owing to their preferences to non-polar smaller volume amino acids, variations in residual physico-chemical properties and more salt-bridges. PLoS One, 2015, 10, e0131495.
[16]
Kyngäs, J.; Valjakka, J. Unreliability of the Chou-Fasman parameters in predicting protein secondary structure. Protein Eng., 1998, 11, 345-348.
[17]
Kloczkowski, A.; Ting, K.L.; Jernigan, R.L.; Garnier, J. Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins, 2002, 49, 154-166.
[18]
Carter, P.; Andersen, C.A.; Rost, B. DSSPcont: Continuous secondary structure assignments for proteins. Nucleic Acids Res., 2003, 31, 3293-3295.
[19]
Piovesan, D.; Walsh, I.; Minervini, G.; Tosatto, S.C.E. FELLS: Fast estimator of latent local structure. Bioinformatics, 2017, 33(12), 1889-1891.
[20]
Taguchi, Y.; Nishida, N. Secondary-structure prediction revisited: Theoretical β-sheet propensity and coil propensity represent structures of amyloids and aid in elucidating phenomena involved in interspecies transmission of prions. PLoS One, 2017, 12, e0171974.
[21]
Wu, W.; Wang, Z.; Cong, P.; Li, T. Accurate prediction of protein relative solvent accessibility using a balanced model. BioData Min., 2017, 10, 1.
[22]
Postic, G.; Ghouzam, Y.; Chebrek, R.; Gelly, J.C. An ambiguity principle for assigning protein structural domains. Sci. Adv., 2017, 3, e1600552.