Abstract
Background: Spinel ferrites have great scientific and technological significance because of their easy manufacturing, low cost and outstanding electrical and magnetic properties. Nickel ferrite nanoparticles are ferromagnetic material with an inverse spinel structure. They show remarkable magnetic properties and hence have a wide range of applications in magnetic storage devices, microwave devices, gas sensors, telecommunication, drug delivery, catalysis and magnetic resonance imaging.
Objective: The aim and objective of this research article is to study the relative effect of NiErxFe2-xO4 nanoparticles and their composites with reduced graphene oxide (rGO) for the photocatalytic degradation reaction and other physical parameters.
Method: Rare earth Er3+ substituted NiErxFe2-xO4 nanoparticles were synthesized via the facile wet chemical route. Six different compositions of NiErxFe2-xO4 with varied Er3+ contents such as (x) = 0.00, 0.005, 0.01, 0.015, 0.02 and 0.025 were selected for evaluation of the effect of Er3+ on various parameters of NiFe2O4 nanoparticles. Reduced graphene oxide (rGO) was prepared by Hummer’s method and was characterized by UV-Visible spectroscopy, X-ray powder diffraction and Raman spectroscopy. Nano-heterostructures of NiErxFe2-xO4 with rGO were prepared by the ultra-sonication method.
Results: X-ray powder diffraction (XRD) confirmed the spinel cubic structure of all the compositions of NiErx- Fe2-xO4 nanoparticles. The photocatalytic degradation rate of methylene blue and congo red under visible light irradiation was found faster in the presence of NiErxFe2-xO4-rGO nanocomposites as compared to bare nanoparticles. It was also investigated that as the Er3+ contents were increased in NiErxFe2-xO4 nanoparticles, the dielectric parameters were largely affected. The room temperature DC-resistivity measurements showed that the Er3+ contents in NiFe2O4 are responsible for the increased electrical resistivity of ferrite particles. The electrochemical impedance spectroscopic (EIS) analysis of NiErxFe2-xO4 nanoparticles and NiErxFe2-xO4-rGO nanocomposites revealed that the ferrite particles possess low conductance as compared to the corresponding composites with graphene.
Conclusion: The data obtained from all these characterization techniques suggested the potential applications of the NiErxFe2-xO4 nanoparticles and NiErxFe2-xO4-rGO nanocomposites for visible light driven photo-catalysis and high-frequency devices fabrication.
Keywords: Ferrites, spinel ferrites, Reduced Graphene Oxide (rGO), nano-heterostructures, photocatalysis, electrochemical impedance spectroscopy.
Graphical Abstract
(b)Chinnasamy, C.N.; Narayanasamy, A.; Ponpandian, N.; Chattopadhyay, K.; Guerault, H.; Greneche, J.M. Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys. Condens. Matter, 2000, 12, 7795.
(c)Ponpandian, N.; Balaya, P.; Narayanasamy, A. Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J. Phys. Condens. Matter, 2002, 14, 3221-3237.
(d)Chinnasamy, C.N.; Narayanasamy, A.; Ponpandian, N.; Chattopadhyay, K.; Shinoda, K.; Jeyadevan, B.; Tohji, K.; Nakatsuka, K.; Furubayashi, T.; Nakatani, I. Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B, 2001, 63, 184108.
(b)Chen, D-H.; He, X-R. Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater. Res. Bull., 2001, 36(7), 1369-1377.
(c)Thakur, S.; Rai, R.; Sharma, S. Structural characterization and magnetic study of NiFexO4 synthesized by co-precipitation method. Mater. Lett., 2015, 139, 368-372.
(d)Chen, D.; Chen, D.; Jiao, X.; Zhao, Y.; He, M. Hydrothermal synthesis and characterization of octahedral nickel ferrite particles. Powder Technol., 2003, 133(1), 247-250.
(e)Pulišová, P.; Kováč, J.; Voigt, A.; Raschman, P. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis. J. Magn. Magn. Mater., 2013, 341, 93-99.
(f)Mathew, D.S.; Juang, R-S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J., 2007, 129(1), 51-65.
(g)Ali, R.; Mahmood, A.; Khan, M.A.; Chughtai, A.H.; Shahid, M.; Shakir, I.; Warsi, M.F. Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method. J. Alloys Compd., 2014, 584, 363-368.
(b)Urcia-Romero, S.; Perales-Pérez, O.; Gutiérrez, G. Effect of Dy-doping on the structural and magnetic properties of Co–Zn ferrite nanocrystals for magnetocaloric applications. J. Appl. Phys, 2010, 107(9), 09A508.
(c)Senapati, K.K.; Borgohain, C.; Phukan, P. Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium. J. Mol. Catal.A Chem., 2011, 339(1), 24-31.
(d)Sharifi, I.; Shokrollahi, H.; Amiri, S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater., 2012, 324(6), 903-915.
(e)Kappiyoor, R.; Liangruksa, M.; Ganguly, R.; Puri, I.K. The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia. J. Appl. Phys., 2010, 108, 094702.
(f)Jordan, A.; Scholz, R.; Wust, P.; Schirra, H.; Thomas, S.; Schmidt, H.; Felix, R. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater., 1999, 194(1), 185-196.
(g)Kim, D-H.; Nikles, D.E.; Johnson, D.T.; Brazel, C.S. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J. Magn. Magn. Mater., 2008, 320(19), 2390-2396.
(h)Faraji, M.; Yamini, M.R. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc., 2010, 7, 1-37.
iCruickshank, D. 1-2 GHz dielectrics and ferrites: Overview and perspectives. J. Eur. Ceram. Soc., 2003, 23(14), 2721-2726.
(b)Wang, D.; Zhou, J.; Zhou, X.; Ke, X-b.; Chen, C.; Wang, Y-r.; Liu, Y-l.; Ren, L. Facile ultrafast microwave synthesis of monodisperse MFe2O4 (M=Fe, Mn, Co, Ni) superparamagnetic nanocrystals. Mater. Lett., 2014, 136, 401-403.
(c)Huo, J.; Wei, M. Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett., 2009, 63(13), 1183-1184.
(d)Patil, J.Y.; Nadargi, D.Y.; Gurav, J.L.; Mulla, I.S.; Suryavanshi, S.S. Synthesis of glycine combusted NiFe2O4 spinel ferrite: A highly versatile gas sensor. Mater. Lett., 2014, 124, 144-147.
(b)Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O. Effect of rare earth substitution in cobalt ferrite bulk materials. J. Magn. Magn. Mater., 2015, 390, 123-131.
(c)Bulai, G.; Popescu, T.; Feder, M.; Caltun, O. Structural,electricandmagneticproperties of CoFe1.8RE0.2O4 (RE1/4Dy, Gd,La)bulkmaterials. J. Magn. Magn. Mater., 2013, 333, 69-74.
(b)Rashad, M.M.; Fouad, O. Synthesis and characterization of nano‐sized nickel ferrites from fly ash for catalytic oxidation of CO. Mater. Chem. Phys., 2005, 94, 365-370.
(c)Abraham, T. Economics of ceramic magnet. Am. Ceram. Soc. Bull., 1994, 73, 62-65.
(b)Nazim, S.; Kousar, T.; Shahid, M.; Khan, M.A.; Nasar, G.; Sher, M.; Warsi, M.F. New graphene-CoxZn1-xFe2O4 nano-heterostructures: Magnetically separable visible light photocatalytic materials. Ceram. Int., 2016, 42(6), 7647-7654.
(c)Zhang, N.; Niu, F.; Wang, S.; Qin, L.; Huang, Y. Enhanced visible light photocatalytic activity of Gddoped BiFeO3 nanoparticles and mechanism insight. Sci. Rep., 2016, 6, 26467.
(b)Wang, C.; Shao, C.; Liu, Y.; Li, X. Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. Inorg. Chem., 2009, 48(3), 1105-1113.
(b)Vijayan, B.K.; Dimitrijevic, N.M.; Wu, J.; Gray, K.A. The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. J. Phys. Chem. C, 2010, 114(49), 21262-21269.
(b)Madni, A.; Noreen, S.; Maqbool, I.; Rehman, F.; Batool, A.; Kashif, P.M.; Rehman, M.; Tahir, N.; Khan, M.I. Graphene-based nanocomposites: Synthesis and their theranostic applications. J. Drug Target., 2018, 1-26.
[http://dx.doi.org/10.1080/1061186X.2018.1437920]
(c)Chang, H.; Wu, H. Graphene-based nanocomposites: Preparation, functionalization, and energy and environmental applications. Energy Environ. Sci., 2013, 6, 3483-3507.
(d)Pattnaik, S.; Swain, K.; Lin, Z. Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J. Mater. Chem. B., 2016, 4(48), 7813-7831.
(b)Fu, M.; Jiao, Q.; Zhao, Y. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites. Mater. Charact., 2013, 86, 303-315.
(c)Lightcap, I.V.; Kamat, P.V. Graphitic design: Prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc. Chem. Res., 2013, 46(10), 2235-2243.
(b)Aziz, H.S.; Rasheed, S.; Khan, R.A.; Rahim, A.; Nisar, J.; Shah, S.M.; Iqbal, F.; Khan, A.R. Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites. RSC Adv, 2016, 6(8), 6589-6597.
(b)Mahalakshmi, S.; Manja, K.S. AC electrical conductivity and dielectric behavior of nanophase nickel ferrites. J. Alloys Compd., 2008, 457(1), 522-525.
(b)Zhang, W.; Li, X.; Yang, Z.; Tang, X.; Ma, Y.; Li, M.; Hu, N.; Wei, H.; Zhang, Y. In situ preparation of cubic Cu2O-RGO nanocomposites for enhanced visible-light degradation of methyl orange. Nanotechnology, 2016, 27, 265703.
(c)Xiong, K.; Wang, K.; Chen, L.; Wang, X.; Fan, Q.; Courtois, J.; Liu, Y.; Tuo, X.; Yan, M. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 composite nanotube arrays with an improved photocatalysis degradation efficiency under simulated sunlight irradiation. Nano-Micro Lett., 2018, 10(1), 17.