[2]
Restifo NP, Dudley ME, Rosenberg SA. Adaptive immunotherapy for cancer: Harnessing the T cell response. Nat Rev Immunol 2012; 12: 269-81.
[3]
Baxevanis CN, Perez SA. Cancer dormancy: A regulatory role for endogenous immunity in establishing and maintaining the tumor dormant state. Vaccines 2015; 3: 597-619.
[4]
Candéiasa SM, Gaiplb US. The immune system in cancer prevention, development and therapy. Anticancer Agents Med Chem 2016; 16(1): 101-7.
[5]
Begley J, Ribas A. Targeted therapies to improve tumor immunotherapy. Clin Cancer Res 2008; 14(14): 4385-91.
[6]
Dimberu PM, Leonhardt RM. Cancer immunotherapy takes a multi-faceted approach to kick the immune system into gear. Yale J Biol Med 2011; 84(4): 371-80.
[7]
Milo GE, Oldham JW, Zimmerman R, Hatch GG, Weisbrod SA. Characterization of human cells transformed by chemical and physical carcinogens in vitro. In Vitro 1981; 17(8): 719-29.
[8]
Oliveira PA, Colaço A, Chaves R, Guedes-Pinto H, De-La-Cruz PLF, Lopes C. Chemical carcinogenesis. Biomed Med Sci 2007; 79(4): 593-616.
[9]
Daya-Grosjean L. Xeroderma pigmentosum and skin cancer. Adv Exp Med Biol 2008; 637: 19-27.
[10]
Feltcamp MCW, Melief CJM, Cast WM. Peptide specific cytotoxic T lymphocyte directed against viral oncogene products. In: Cancer Clinical Science in Practice Tumor Immunology: Immunotherapy and Cancer Vaccines. Dalgleish AG, Browning MJ. Press Syndicate of University of Cambridge: Cambridge, New York, 1996; pp. 132-9.
[11]
Woller N, Knocke S, Mundt B, et al. Virus-induced tumor inflammation facilitates effective DC cancer immunotherapy in a Treg-dependent manner in mice. J Clin Invest 2011; 121(7): 2570-82.
[12]
Yin YJ, Salah Z, Maoz M, et al. Oncogenic transformation induces tumor angiogenesis: A role for PAR1 activation. FASEB J 2003; 17(2): 163-74.
[13]
Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R. The causes of cancer revisited: “Mitochondrial malignancy” and ROS-induced oncogenic transformation – Why mitochondria are targets for cancer therapy. Molecular Aspects of Medicine. Mol Mech New Therapeut Targets Human Carcinogen 2010; 31(2): 145-70.
[14]
Hills SA, Diffley JFX. DNA replication and oncogene-induced replicative stress. Curr Biol 2014; 24(10): R435-44.
[15]
Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 1984; 307: 521-7.
[16]
Surmacz E. Growth factor receptors as therapeutic targets: Strategies to inhibit the insulin-like growth factor I receptor. Oncogene 2003; 22: 6589-97.
[17]
Cantley LC, Auger KR, Carpenter C, et al. Oncogenes and signal
transduction. Cell1 991 64(2): 281-302.
[18]
Introna M, Golay J. How can oncogenic transcription factors cause cancer: A critical review of the myb story. Leukemia 1999; 13(9): 1301-6.
[19]
Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. In: Proto-Oncogenes and Tumor-Suppressor Genes. 4th ed. Freeman WH and Company New York 2000.
[20]
Osborne BA, Lawrence M, Schwartz LM. Essential genes that regulate apoptosis. Trends Cell Biol 1994; 4(11): 394-9.
[21]
Cory S. Activation of cellular oncogenes in hemopoietic cells by chromosome translocation. Adv Cancer Res 1986; 47: 189-234.
[22]
Cho KR, Hedrick L. Genetic alterations in human tumors. Genet Instab Tumorigen 1997; 21: 149-76.
[23]
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009; 461: 1071-8.
[24]
Zagurya D, Buaneca HL, Bizzinia B, Burnyb A, Lewisc G, Galloc RC. Active versus passive anti-cytokine antibody therapy against cytokine-associated chronic diseases. Cytokine Growth Factor Rev 2003; 14(2): 123-37.
[25]
Albertson DG. Gene amplification in cancer. Trends Genet 2006; 22(8): 447-55.
[26]
Schwab M. Amplification of oncogenes in human cancer cells. BioEssays 1998; 20(6): 473-9.
[27]
Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS. A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 2010; 10: 59-64.
[28]
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39(1): 1-10.
[29]
Finn OJ. Cancer immunology. N Engl J Med 2008; 358: 2704-15.
[30]
Melvold RW, Sticca RP. Basic and tumor immunology: A review. Surg Oncol Clin N Am 2007; 16(4): 711-35.
[31]
Zarour HM, Ferrone S. Cancer immunotherapy: Progress and challenges in the clinical setting. Eur J Immunol 2011; 41(6): 1510-5.
[32]
Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: The 2013 update. Cancer Immun 2013; 15(13): 15.
[33]
Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy. Nat Rev Cancer 2014; 14(2): 135-46.
[34]
Disis ML, Cheever MA. Oncogenic proteins as tumor antigens. Oncogenic proteins as tumor antigens. Curr Opin Immunol 1996; 8(5): 637-42.
[35]
Maher J, Davies ET. Targeting cytotoxic T lymphocytes for cancer immunotherapy. Br J Cancer 2004; 91(5): 817-21.
[36]
Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127-56.
[37]
Lamagna C, Aurrand-Lions M, Imhof BA. Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 2006; 80(4): 705-13.
[38]
Attarwala H. Role of antibodies in cancer targeting. J Nat Sci Biol Med 2010; 1(1): 53-6.
[39]
Dunn GP, Old LJ, and Schreiber RD. The three ES of cancer immunoediting. Annu Rev Immunol 2004; 22: 329-60.
[40]
Igney FH, Krammer PH. Immune escape of tumors: Apoptosis resistance and tumor counterattack. J Leukoc Biol 2002; 71(6): 907-20.
[41]
Bubeník J. MHC class I down-regulation: tumour escape from immune surveillance? Int J Oncol 2004; 25(2): 487-91.
[42]
Munn DH, Mellor AL. The tumor-draining lymph node as an immune-privileged site. Immunol Rev 2006; 213: 146-58.
[43]
Uekusa Y, Gao P, Yamaguchi N, et al. A role for endogenous IL-12 in tumor immunity: IL-12 is required for the acquisition of tumor-migratory capacity by T cells and the development of T cell-accepting capacity in tumor masses. J Leukoc Biol 2002; 72(5): 864-73.
[44]
Nakajima C, Uekusa Y, Iwasaki M, et al. A role of interferon-gamma (IFN-gamma) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN-gamma-deficient mice. Cancer Res 2001; 61(8): 3399-405.
[45]
Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014; 14: 359-70.
[46]
Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25: 267-96.
[47]
Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: Building on success. Nat Rev Immunol 2006; 6: 383-93.
[48]
Rosenberg SO. Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr Opin Immunol 2004; 16(2): 143-50.
[49]
Leavy O. Immunotherapy: A triple blow for cancer. Nat Rev Cancer 2015; 15: 258-9.
[50]
Cui TX, Kryczek I, Zhao L, et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 2013; 39(3): 611-21.
[51]
Zhao E, Maj T, Kryczek I, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 2016; 17(1): 95-103.
[52]
Wieder T, Eigentler T, Brenner E, Röcken M. Immune checkpoint blockade therapy. J Allergy Clin Immunol 2018; 142(5): 1403-14.
[53]
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359(6382): 1350-5.
[54]
Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014; 515(7528): 577.
[55]
Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol 2006; 90: 297-339.
[56]
Webb ES, Liu P, Baleeiro R, Lemoine NR, Yuan M, Wang YH. Immune checkpoint inhibitors in cancer therapy. J Biomed Res 2018; 32(5): 317-26.