Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteomic Analysis of Liver Preservation Solutions Prior to Liver Transplantation

Author(s): Abdurrahman Coskun*, Ahmet Tarik Baykal, Merve Oztug, Dilek Kazan, Ekrem Kaya, Remzi Emiroglu, Sezai Yılmaz, Halit Ziya Dundar, Muslum Akgoz, Ibrahim Berber, Hikmet Aktas, Gokhan Bilsel, Kubra Karaosmanoglu, Banu Çetiner, Cansu Arslan, Ilknur Yurtsever and Cevat Yazıcı

Volume 16, Issue 2, 2019

Page: [119 - 135] Pages: 17

DOI: 10.2174/1570164615666180905104543

Price: $65

Abstract

Objective: Transplantation is the preferred treatment for patients with end-stage liver diseases. However, in clinical practice, functional preservation of the liver is a major concern before the transplantation. Although various protective solutions are used (in combination with hypothermia), the functional preservation time for liver is still limited to hours. We analyzed the preservation medium to detect the proteins released from the liver during storage period.

Material/Methods: Samples were collected from the pre-transplant preservation mediums of 23 liver donors. For all donors, the cases involved Donation after Brain Death (DBD). 2D-PAGE and LCMSMS methodologies were used to detect the proteins and peptides from the preservation mediums.

Results: A total of 198 proteins originating from the liver were detected.

Conclusion: The data provide valuable insights into biomarkers that may be used to evaluate organ injury, functional status, and suitability for transplantation. Additionally, the findings could be valuable for the development of new strategies for effective preservation of solid organs prior to transplantation.

Keywords: Liver, mass spectrometry, organ preservation solution, proteomics, liver transplantation, hypothermia.

Graphical Abstract

[1]
Spiegel, H.U.; Palmes, D. Organ preservation.InTransplantation surgery; Hakim, N.S.; Danovitch, G.M., Eds.; London, 2001, pp. 265-294.
[2]
Adam, R.; Bismuth, H.; Diamond, T.; Ducot, B.; Morino, M.; Astarcioglu, I.; Johann, M.; Azoulay, D.; Chiche, L.; Bao, Y.M. Effect of extended cold ischaemia with UW solution on graft function after liver transplantation. Lancet, 1992, 340(8832), 1373-1376.
[3]
Tian, T.; Lindell, S.L.; Kowalski, C.; Mangino, M.J. Moesin functionality in hypothermic liver preservation injury. Cryobiology, 2014, 69(1), 34-40.
[4]
Stahl, J.E.; Kreke, J.E.; Malek, F.A.A.; Schaefer, A.J.; Vacanti, J. Consequences of cold-ischemia time on primary nonfunction and patient and graft survival in liver transplantation: A meta-analysis. PLoS One, 2008, 3(6), e2468.
[5]
Stewart, Z.A. UW solution: Still the gold standard for liver transplantation. Am. J. Transplant., 2015, 15(2), 295-296.
[6]
Ben-Mosbah, I.; Roselló-Catafau, J.; Alfany-Fernandez, I.; Rimola, A.; Parellada, P.P.; Mitjavila, M.T.; Lojek, A.; Ben Abdennebi, H.; Boillot, O.; Rodés, J.; Peralta, C. Addition of carvedilol to university Wisconsin solution improves rat steatotic and nonsteatotic liver preservation. Liver Transpl., 2010, 16(2), 163-171.
[7]
Coskun, A.; Gunal, O.; Sahin, I.; Aslaner, A.; Yildirim, U.; Yavuz, O. Does L-carnitine have any effect on cold preservation injury of non-fatty liver in the university of Wisconsin solution? Hepatol. Res., 2007, 37(8), 656-660.
[8]
Gunal, O.; Coskun, A.; Aslaner, A.; Yildirim, U. Does melatonin alleviate cold preservation injury of the liver? Turk. J. Med. Sci., 2010, 40(3), 465-470.
[9]
Coskun, A.; Baykal, A.T.; Kazan, D.; Akgoz, M.; Senal, M.O.; Berber, I.; Titiz, I.; Bilsel, G.; Kilercik, H.; Karaosmanoglu, K.; Cicek, M.; Yurtsever, I.; Yazıcı, C. Proteomic analysis of kidney preservation solutions prior to renal transplantation. PLoS One, 2016, 11(12), e0168755.
[10]
Serhatli, M.; Baysal, K.; Acilan, C.; Tuncer, E.; Bekpinar, S.; Baykal, A.T. Proteomic study of the microdissected aortic media in human thoracic aortic aneurysms. J. Proteome Res., 2014, 13(11), 5071-5080.
[11]
Bradford, M.M.A. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[12]
Baykal, A.T.; Baykal, B.; Serhatli, M.; Adiguzel, Z.; Tuncer, M.A.; Kacar, O. Proteomic evidence for the plasticity of cultured vascular smooth muscle cells. Turk. J. Biol., 2013, 37, 414-425.
[13]
Tang, Z.; Baykal, A.T.; Gao, H.; Quezada, H.C.; Zhang, H.; Bereczki, E.; Serhatli, M.; Baykal, B.; Acioglu, C.; Wang, S.; Ioja, E.; Ji, X.; Zhang, Y.; Guan, Z.; Winblad, B.; Pei, J.J. mTor is a signaling hub in cell survival: A mass-spectrometry-based proteomics investigation. J. Proteome Res., 2014, 13(5), 2433-2444.
[14]
Ben-Ari, Z.; Pappo, O.; Mor, E. Intrahepatic cholestasis after liver transplantation. Liver Transpl., 2003, 9(10), 1005-1018.
[15]
Emadali, A.; Muscatelli-Groux, B.; Delom, F.; Jenna, S.; Boismenu, D.; Sacks, D.B.; Metrakos, P.P.; Chevet, E. Proteomic analysis of ischemia-reperfusion injury upon human liver transplantation reveals the protective role of IQGAP1. Mol. Cell. Proteomics, 2006, 5(7), 1300-1313.
[16]
Washington, K. Update on post-liver transplantation infections, malignancies, and surgical complications. Adv. Anat. Pathol., 2005, 12(4), 221-226.
[17]
Zatloukal, K.; Stumptner, C.; Fuchsbichler, A.; Fickert, P.; Lackner, C.; Trauner, M.; Denk, H. The keratin cytoskeleton in liver diseases. J. Pathol., 2004, 204(4), 367-376.
[18]
Ku, N.O.; Strnad, P.; Zhong, B.H.; Tao, G.Z.; Omary, M.B. Keratins let liver live: Mutations predispose to liver disease and crosslinking generates mallory-denk bodies. Hepatology, 2007, 46(5), 1639-1649.
[19]
Zhang, W.; Wang, M.; Xie, H.Y.; Zhou, L.; Meng, X.Q.; Shi, J.; Zheng, S. Role of reactive oxygen species in mediating hepatic ischemia-reperfusion injury and its therapeutic applications in liver transplantation. Transplant. Proc., 2007, 39(5), 1332-1337.
[20]
Rhee, S.G.; Chae, H.Z.; Kim, K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med., 2005, 38(12), 1543-1552.
[21]
Jochum, C.; Beste, M.; Sowa, J.P.; Farahani, M.S.; Penndorf, V.; Nadalin, S.; Saner, F.; Canbay, A.; Gerken, G. Glutathione-S-transferase subtypes α and π as a tool to predict and monitor graft failure or regeneration in a pilot study of living donor liver transplantation. Eur. J. Med. Res., 2011, 16(1), 34-40.
[22]
Schön, M.R.; Akkoc, N.; Schrem, H.; Keech, G.; Kräutlein, K.; Lemmens, H.P.; Wolf, S.; Tominaga, M.; Kollmar, O.; Neuhaus, P. Alpha-glutathione-S-transferase is a sensitive marker of hepatocellular damage due to warm or cold ischemia in pig liver transplantation. Transplant. Proc., 1997, 29(7), 3036-3038.
[23]
Caldwell, R.B.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.W. Arginase: An old enzyme with new tricks. Trends Pharmacol. Sci., 2015, 36(6), 395-405.
[24]
Ikemoto, M.; Tsunekawa, S.; Tanaka, K.; Tanaka, A.; Yamaoka, Y.; Ozawa, K.; Fukuda, Y.; Moriyasu, F.; Totani, M.; Kasai, Y.; Mori, T.; Ueda, K. Liver-type arginase in serum during and after liver transplantation: A novel index in monitoring conditions of the liver graft and its clinical significance. Clin. Chim. Acta, 1998, 271(1), 11-23.
[25]
Grodzicki, M.; Pawlak, J.; Chrzanowska, A.; Porembska, Z.; Krawczyk, M. Arginase activity concentration marking in monitoring of hepatocytes function after orthotopic liver transplantation--preliminary report. Ann. Transplant., 2004, 9(3), 54-57.
[26]
Ashamiss, F.; Wierzbicki, Z.; Chrzanowska, A.; Scibior, D.; Pacholczyk, M.; Kosieradzki, M.; Lagiewska, B.; Porembska, Z.; Rowiński, W. Clinical significance of arginase after liver transplantation. Ann. Transplant., 2004, 9(3), 58-60.
[27]
Shimojima, N.; Shimazu, M.; Kikuchi, H.; Kawachi, S.; Tanabe, M.; Hoshino, K.; Wakabayashi, G.; Morikawa, Y.; Kitajima, M. Serum alcohol dehydrogenase: A sensitive biomarker of ongoing graft function after liver transplantation. Clin. Transplant., 2007, 21(4), 498-501.
[28]
Frateschi, S.; Camerer, E.; Crisante, G.; Rieser, S.; Membrez, M.; Charles, R.P.; Beermann, F.; Stehle, J.C.; Breiden, B.; Sandhoff, K.; Rotman, S.; Haftek, M.; Wilson, A.; Ryser, S.; Steinhoff, M.; Coughlin, S.R.; Hummler, E. PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin. Nat. Commun., 2011, 2(1), 161.
[29]
Iero, M.; Squarcina, P.; Romero, P.; Guillaume, P.; Scarselli, E.; Cerino, R.; Carrabba, M.; Toutirais, O.; Parmiani, G.; Rivoltini, L. Low TCR avidity and lack of tumor cell recognition in CD8+ T cells primed with the CEA-analogue CAP1-6D peptide. Cancer Immunol. Immunother., 2007, 56(12), 1979-1991.
[30]
Chen, C.; Meng, Y.; Wang, L.; Wang, H.X.; Tian, C.; Pang, G.D.; Li, H.H.; Du, J. Ubiquitin-activating enzyme E1 inhibitor PYR41 attenuates angiotensin II-induced activation of dendritic cells via the I κ Ba/NF-κ B and MKP1/ERK/STAT1 pathways. Immunology, 2014, 142(2), 307-319.
[31]
Stratil, A.; Gahne, B.; Juneja, R.K.; Hjertén, S.; Spik, G. Pig plasma postalbumin-2 (Alpha 1B-glycoprotein): Isolation, partial characterization and immunological cross-reactivity with other mammalian sera. Comp. Biochem. Physiol. B, 1987, 88(3), 953-961.
[32]
Berbic, M.; Schulke, L.; Markham, R.; Tokushige, N.; Russell, P.; Fraser, I.S. Macrophage expression in endometrium of women with and without endometriosis. Hum. Reprod., 2009, 24(2), 325-332.
[33]
Hauet, T.; Eugene, M.A. New approach in organ preservation: Potential role of new polymers. Kidney Int., 2008, 74(8), 998-1003.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy