Review Article

氮氧化应激,高级糖化终产物与炎症性肠病中炎症的密切相互作用

卷 27, 期 13, 2020

页: [2059 - 2076] 页: 18

弟呕挨: 10.2174/0929867325666180904115633

价格: $65

conference banner
摘要

背景:炎症性肠病(IBD)没有明确的病因。但是,诸如遗传和硝基氧化应激等因素与慢性炎症和IBD进展为结直肠癌(CRC)有关。本综述讨论了IBD中硝基氧化应激,炎症和高级糖基化终产物(AGE)及其相应受体(RAGE)的关联,并探讨了这些因素与核因子之间的联系,例如核因子Kappa B(NF- κB),类红细胞2相关因子2(Nrf2)和p53突变体(p53M)。 方法:我们使用以下术语的组合搜索了PubMed,ScienceDirect和Web of Science数据库:IBD,CRC,氧化应激,炎症,NF-κB,Nrf2,p53M,AGE和RAGE。 结果:氧化应激和炎症激活了两个细胞途径,基于NF-κB和p53M的促炎,促氧化剂和促癌基因的核表达,与NF-κB激活,脱氧核糖核酸(DNA)损伤有关和致癌基因的表达。 Nrf2刺激酶和非酶抗氧化剂系统和抗炎基因的核表达,并被慢性氧化应激,NF-κB和p53M抑制。 AGE / RAGE与炎症进程有关,因为在IBD患者中发现RAGE多态性和RAGE水平升高。这些途径的改变与氧化性损伤的结合是IBD症状和CRC进展的原因。 结论:IBD是一种基于炎症和硝基氧化应激的肠病。对生化事件及其复杂相互作用的分子理解将影响基础和应用研究,动物模型和临床试验。

关键词: 核因子κB,脂多糖,促红细胞因子2-相关因子-2,p53突变体,结直肠癌,脱氧核糖核酸。

[1]
Medhi, B.; Prakash, A.; Avti, P.K.; Saikia, U.N.; Pandhi, P.; Khanduja, K.L. Effect of Manuka honey and sulfasalazine in combination to promote antioxidant defense system in experimentally induced ulcerative colitis model in rats. Indian J. Exp. Biol., 2008, 46(8), 583-590.
[PMID: 18814487]
[2]
May, D.; Pan, S.; Crispin, D.A. Investigating neoplastic progression of ulcerative colitis with label-free comparative proteomics. J. Proteome Res., 2010, 10(1), 200-209.
[http://dx.doi.org/10.1021/pr100574p] [PMID: 20828217]
[3]
Walsh, A.J.; Bryant, R.V.; Travis, S.P. Current best practice for disease activity assessment in IBD. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(10), 567-579.
[http://dx.doi.org/10.1038/nrgastro.2016.128] [PMID: 27580684]
[4]
Pravda, J. Radical induction theory of ulcerative colitis. World J. Gastroenterol., 2005, 11(16), 2371-2384.
[http://dx.doi.org/10.3748/wjg.v11.i16.2371] [PMID: 15832404]
[5]
Bringiotti, R.; Ierardi, E.; Lovero, R.; Losurdo, G.; Di Leo, A.; Principi, M. Intestinal microbiota: The explosive mixture at the origin of inflammatory bowel disease? World J. Gastrointest. Pathophysiol., 2014, 5(4), 550-559.
[http://dx.doi.org/10.4291/wjgp.v5.i4.550] [PMID: 25400998]
[6]
Moura, F.A.; Goulart, M.O. Inflammatory bowel diseases: the crosslink between risk factors and antioxidant therapy in: Gastrointestinal Tissue: oxidative stress and dietary antioxidants; Gracia-Sancho, J; Salvadó, J., Ed.; Elsevier, 2017, Vol. 1, pp. 99-112.
[http://dx.doi.org/10.1016/B978-0-12-805377-5.00007-2]
[7]
Ciccocioppo, R.; Vanoli, A.; Klersy, C.; Imbesi, V.; Boccaccio, V.; Manca, R.; Betti, E.; Cangemi, G.C.; Strada, E.; Besio, R.; Rossi, A.; Falcone, C.; Ardizzone, S.; Fociani, P.; Danelli, P.; Corazza, G.R. Role of the advanced glycation end products receptor in Crohn’s disease inflammation. World J. Gastroenterol., 2013, 19(45), 8269-8281.
[http://dx.doi.org/10.3748/wjg.v19.i45.8269] [PMID: 24363518]
[8]
Almenier, H.A.; Al Menshawy, H.H.; Maher, M.M.; Al Gamal, S. Oxidative stress and inflammatory bowel disease. Front. Biosci. (Elite Ed.), 2012, 4, 1335-1344.
[http://dx.doi.org/10.2741/e463] [PMID: 22201958]
[9]
Karp, S.M.; Koch, T.R. Oxidative stress and antioxidants in inflammatory bowel disease. Dis. Mon., 2006, 52(5), 199-207.
[http://dx.doi.org/10.1016/j.disamonth.2006.05.005] [PMID: 16828361]
[10]
Kruidenier, L.; Verspaget, H.W. Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease--radicals or ridiculous? Aliment. Pharmacol. Ther., 2002, 16(12), 1997-2015.
[http://dx.doi.org/10.1046/j.1365-2036.2002.01378.x] [PMID: 12452933]
[11]
Devi, K.P.; Malar, D.S.; Braidy, N.; Nabavi, S.M.; Nabavi, S.F. A mini review on the chemistry and neuroprotective effects of silymarin. Curr. Drug Targets, 2017, 18(13), 1529-1536.
[http://dx.doi.org/10.2174/1389450117666161227125121] [PMID: 28025940]
[12]
Tejada, S.; Setzer, W.N.; Daglia, M.; Nabavi, S.F.; Sureda, A.; Braidy, N.; Gortzi, O.; Nabavi, S.M. Neuroprotective effects of ellagitannins: a brief review. Curr. Drug Targets, 2017, 18(13), 1518-1528.
[http://dx.doi.org/10.2174/1389450117666161005112002] [PMID: 27719661]
[13]
Duboc, H.; Rajca, S.; Rainteau, D.; Benarous, D.; Maubert, M.A.; Quervain, E.; Thomas, G.; Barbu, V.; Humbert, L.; Despras, G.; Bridonneau, C.; Dumetz, F.; Grill, J.P.; Masliah, J.; Beaugerie, L.; Cosnes, J.; Chazouillères, O.; Poupon, R.; Wolf, C.; Mallet, J.M.; Langella, P.; Trugnan, G.; Sokol, H.; Seksik, P. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut, 2013, 62(4), 531-539.
[http://dx.doi.org/10.1136/gutjnl-2012-302578] [PMID: 22993202]
[14]
Fujiyama, Y.; Andoh, A. [Dysbiosis in inflammatory bowel disease]. Nihon Rinsho, 2012, 70(Suppl. 1), 79-84.
[PMID: 23126071]
[15]
Jiang, W.; Wu, N.; Wang, X.; Chi, Y.; Zhang, Y.; Qiu, X.; Hu, Y.; Li, J.; Liu, Y. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep., 2015, 5, 8096.
[http://dx.doi.org/10.1038/srep08096] [PMID: 25644696]
[16]
Tamboli, C.P.; Neut, C.; Desreumaux, P.; Colombel, J.F. Dysbiosis in inflammatory bowel disease. Gut, 2004, 53(1), 1-4.
[http://dx.doi.org/10.1136/gut.53.1.1] [PMID: 14684564]
[17]
Nunes, S.; Danesi, F.; Del Rio, D.; Silva, P. Resveratrol and inflammatory bowel disease: the evidence so far. Nutr. Res. Rev., 2017, 1-13.
[PMID: 29191255]
[18]
Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res., 2013, 47(Suppl. 1), 3-27.
[http://dx.doi.org/10.3109/10715762.2013.815348] [PMID: 23767955]
[19]
Barbosa, J.H.P.; Souza, I.T.; Santana, A.E.G.; Goulart, M.O.F. A determinação dos produtos avançados de glicação (AGEs) e de lipoxidação (ALEs) em alimentos e em sistemas biológicos: avanços, desafios e perspectivas. Quim. Nova, 2016, 39(5), 13.
[20]
Kirsner, J.B. Historical origins of current IBD concepts. World J. Gastroenterol., 2001, 7(2), 175-184.
[http://dx.doi.org/10.3748/wjg.v7.i2.175] [PMID: 11819757]
[21]
Wink, D.A.; Mitchell, J.B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med., 1998, 25(4-5), 434-456.
[http://dx.doi.org/10.1016/S0891-5849(98)00092-6] [PMID: 9741580]
[22]
Leigh-Brown, S.; Enriquez, J.A.; Odom, D.T. Nuclear transcription factors in mammalian mitochondria. Genome Biol., 2010, 11(7), 215.
[http://dx.doi.org/10.1186/gb-2010-11-7-215] [PMID: 20670382]
[23]
Sies, H. Biological redox systems and oxidative stress. Cell. Mol. Life Sci., 2007, 64(17), 2181-2188.
[http://dx.doi.org/10.1007/s00018-007-7230-8] [PMID: 17565441]
[24]
Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[25]
Ramasamy, R.; Yan, S.F.; Herold, K.; Clynes, R.; Schmidt, A.M. Receptor for advanced glycation end products: fundamental roles in the inflammatory response: winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Ann. N. Y. Acad. Sci., 2008, 1126, 7-13.
[http://dx.doi.org/10.1196/annals.1433.056] [PMID: 18448789]
[26]
Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; Essers, J.; Mitrovic, M.; Ning, K.; Cleynen, I.; Theatre, E.; Spain, S.L.; Raychaudhuri, S.; Goyette, P.; Wei, Z.; Abraham, C.; Achkar, J.P.; Ahmad, T.; Amininejad, L.; Ananthakrishnan, A.N.; Andersen, V.; Andrews, J.M.; Baidoo, L.; Balschun, T.; Bampton, P.A.; Bitton, A.; Boucher, G.; Brand, S.; Büning, C.; Cohain, A.; Cichon, S.; D’Amato, M.; De Jong, D.; Devaney, K.L.; Dubinsky, M.; Edwards, C.; Ellinghaus, D.; Ferguson, L.R.; Franchimont, D.; Fransen, K.; Gearry, R.; Georges, M.; Gieger, C.; Glas, J.; Haritunians, T.; Hart, A.; Hawkey, C.; Hedl, M.; Hu, X.; Karlsen, T.H.; Kupcinskas, L.; Kugathasan, S.; Latiano, A.; Laukens, D.; Lawrance, I.C.; Lees, C.W.; Louis, E.; Mahy, G.; Mansfield, J.; Morgan, A.R.; Mowat, C.; Newman, W.; Palmieri, O.; Ponsioen, C.Y.; Potocnik, U.; Prescott, N.J.; Regueiro, M.; Rotter, J.I.; Russell, R.K.; Sanderson, J.D.; Sans, M.; Satsangi, J.; Schreiber, S.; Simms, L.A.; Sventoraityte, J.; Targan, S.R.; Taylor, K.D.; Tremelling, M.; Verspaget, H.W.; De Vos, M.; Wijmenga, C.; Wilson, D.C.; Winkelmann, J.; Xavier, R.J.; Zeissig, S.; Zhang, B.; Zhang, C.K.; Zhao, H.; Silverberg, M.S.; Annese, V.; Hakonarson, H.; Brant, S.R.; Radford-Smith, G.; Mathew, C.G.; Rioux, J.D.; Schadt, E.E.; Daly, M.J.; Franke, A.; Parkes, M.; Vermeire, S.; Barrett, J.C.; Cho, J.H.; Cho, J.H. International IBD Genetics Consortium (IIBDGC). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491(7422), 119-124.
[http://dx.doi.org/10.1038/nature11582] [PMID: 23128233]
[27]
Inohara, N.; Ogura, Y.; Fontalba, A.; Gutierrez, O.; Pons, F.; Crespo, J.; Fukase, K.; Inamura, S.; Kusumoto, S.; Hashimoto, M.; Foster, S.J.; Moran, A.P.; Fernandez-Luna, J.L.; Nuñez, G. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem., 2003, 278(8), 5509-5512.
[http://dx.doi.org/10.1074/jbc.C200673200] [PMID: 12514169]
[28]
Balasubramanian, I.; Gao, N. From sensing to shaping microbiota: insights into the role of NOD2 in intestinal homeostasis and progression of Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 313(1), G7-G13.
[http://dx.doi.org/10.1152/ajpgi.00330.2016] [PMID: 28450278]
[29]
Chirieleison, S.M.; Marsh, R.A.; Kumar, P.; Rathkey, J.K.; Dubyak, G.R.; Abbott, D.W. Nucleotide-binding oligomerization domain (NOD) signaling defects and cell death susceptibility cannot be uncoupled in X-linked inhibitor of apoptosis (XIAP)-driven inflammatory disease. J. Biol. Chem., 2017, 292(23), 9666-9679.
[http://dx.doi.org/10.1074/jbc.M117.781500] [PMID: 28404814]
[30]
Couturier-Maillard, A.; Secher, T.; Rehman, A.; Normand, S.; De Arcangelis, A.; Haesler, R.; Huot, L.; Grandjean, T.; Bressenot, A.; Delanoye-Crespin, A.; Gaillot, O.; Schreiber, S.; Lemoine, Y.; Ryffel, B.; Hot, D.; Nùñez, G.; Chen, G.; Rosenstiel, P.; Chamaillard, M. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest., 2013, 123(2), 700-711.
[http://dx.doi.org/10.1172/JCI62236] [PMID: 23281400]
[31]
Saxena, A.; Lopes, F.; Poon, K.K.H.; McKay, D.M. Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 313(1), G26-G38.
[http://dx.doi.org/10.1152/ajpgi.00070.2017] [PMID: 28450277]
[32]
Moura, F.A.; de Andrade, K.Q.; Dos Santos, J.C.F.; Araújo, O.R.P.; Goulart, M.O.F. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol., 2015, 6, 617-639.
[http://dx.doi.org/10.1016/j.redox.2015.10.006] [PMID: 26520808]
[33]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem., 2017, 86, 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[34]
Wang, Z.; Li, S.; Cao, Y.; Tian, X.; Zeng, R.; Liao, D.F.; Cao, D. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxid. Med. Cell. Longev., 2016, 20169875298
[http://dx.doi.org/10.1155/2016/9875298] [PMID: 26823956]
[35]
Achitei, D.; Ciobica, A.; Balan, G.; Gologan, E.; Stanciu, C.; Stefanescu, G. Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig. Dis. Sci., 2013, 58(5), 1244-1249.
[http://dx.doi.org/10.1007/s10620-012-2510-z] [PMID: 23306840]
[36]
Genser, D.; Kang, M.H.; Vogelsang, H.; Elmadfa, I. Status of lipidsoluble antioxidants and TRAP in patients with Crohn’s disease and healthy controls. Eur. J. Clin. Nutr., 1999, 53(9), 675-679.
[http://dx.doi.org/10.1038/sj.ejcn.1600764] [PMID: 10509761]
[37]
Alzoghaibi, M.A.; Al Mofleh, I.A.; Al-Jebreen, A.M. Lipid peroxides in patients with inflammatory bowel disease. Saudi J. Gastroenterol., 2007, 13(4), 187-190.
[http://dx.doi.org/10.4103/1319-3767.36750] [PMID: 19858644]
[38]
Moura, F.A.; de Andrade, K.Q.; de Araujo, O.R.; Nunes-Souza, V. Colonic and hepatic modulation by lipoic acid and/or n-acetylcysteine supplementation in mild ulcerative colitis induced by dextran sodium sulfate in rats. Oxid. Med. Cell. Longev., 2016, 20164047362
[http://dx.doi.org/10.1155/2016/4047362] [PMID: 27957238]
[39]
Forman, H.J.; Augusto, O.; Brigelius-Flohe, R.; Dennery, P.A.; Kalyanaraman, B.; Ischiropoulos, H.; Mann, G.E.; Radi, R.; Roberts, L.J., II; Vina, J.; Davies, K.J. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic. Biol. Med., 2015, 78, 233-235.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.504] [PMID: 25462642]
[40]
Wang, J.; Zeng, J.; Wang, H.; Ye, S.; Bi, Y.; Zhou, Y.; Li, K.; Zhou, Y. Genetic polymorphisms of RAGE and risk of ulcerative colitis in a Chinese population. Immunol. Lett., 2016, 170, 88-94.
[http://dx.doi.org/10.1016/j.imlet.2015.09.003] [PMID: 26349055]
[41]
Witko-Sarsat, V.; Nguyen Khoa, T.; Jungers, P.; Drüeke, T.; Descamps-Latscha, B. Advanced oxidation protein products: oxidative stress markers and mediators of inflammation in uremia. Adv. Nephrol. Necker Hosp., 1998, 28, 321-341.
[PMID: 9889997]
[42]
Wu, P.; Xie, F.; Xue, M.; Xu, X.; He, S.; Lin, M.; Bai, L. Advanced oxidation protein products decrease the expression of calcium transport channels in small intestinal epithelium via the p44/42 MAPK signaling pathway. Eur. J. Cell Biol., 2015, 94(5), 190-203.
[http://dx.doi.org/10.1016/j.ejcb.2015.02.002] [PMID: 25801217]
[43]
Moran, G.W.; Dubeau, M.F.; Kaplan, G.G.; Panaccione, R.; Ghosh, S. Novel concepts in inflammatory bowel disease. Br. Med. Bull., 2014, 109, 55-72.
[http://dx.doi.org/10.1093/bmb/ldt039] [PMID: 24505093]
[44]
Vasconcelos, S.M.L.; Goulart, M.O.F.; Moura, J.B.F.; Benfato, V.M.M.S.; Kubota, L.T. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Quim. Nova, 2007, 30(5), 1323-1338.
[http://dx.doi.org/10.1590/S0100-40422007000500046]
[45]
Pasparakis, M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat. Rev. Immunol., 2009, 9(11), 778-788.
[http://dx.doi.org/10.1038/nri2655] [PMID: 19855404]
[46]
Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol., 2014, 14(5), 329-342.
[http://dx.doi.org/10.1038/nri3661] [PMID: 24751956]
[47]
Ellis, R.D.; Goodlad, J.R.; Limb, G.A.; Powell, J.J.; Thompson, R.P.; Punchard, N.A. Activation of nuclear factor kappa B in Crohn’s disease. Inflamm. Res., 1998, 47(11), 440-445.
[http://dx.doi.org/10.1007/s000110050358] [PMID: 9865503]
[48]
Schreiber, S.; Nikolaus, S.; Hampe, J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut, 1998, 42(4), 477-484.
[http://dx.doi.org/10.1136/gut.42.4.477] [PMID: 9616307]
[49]
Han, Y.M.; Koh, J.; Kim, J.W.; Lee, C.; Koh, S.J.; Kim, B.; Lee, K.L. Im, J.P.; Kim, J.S. NF-kappa B activation correlates with disease phenotype in Crohn’s disease. PLoS One, 2017, 12(7)e0182071
[http://dx.doi.org/10.1371/journal.pone.0182071] [PMID: 28753650]
[50]
Olesen, C.M.; Coskun, M.; Peyrin-Biroulet, L.; Nielsen, O.H. Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases. Pharmacol. Ther., 2016, 159, 110-119.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.001] [PMID: 26808166]
[51]
Soussi, T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res., 2000, 60(7), 1777-1788.
[PMID: 10766157]
[52]
Staib, F.; Robles, A.I.; Varticovski, L.; Wang, X.W.; Zeeberg, B.R.; Sirotin, M.; Zhurkin, V.B.; Hofseth, L.J.; Hussain, S.P.; Weinstein, J.N.; Galle, P.R.; Harris, C.C. The p53 tumor suppressor network is a key responder to microenvironmental components of chronic inflammatory stress. Cancer Res., 2005, 65(22), 10255-10264.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1714] [PMID: 16288013]
[53]
Radovic, S.; Vukobrat-Bijedic, Z.; Selak, I.; Babic, M. Expression of p53, bcl-2, and Ki-67 proteins in the inflam-matory regenerative and dysplastic epithelial lesions of flat colonic mucosa. Bosn. J. Basic Med. Sci., 2006, 6(1), 39-45.
[http://dx.doi.org/10.17305/bjbms.2006.3208] [PMID: 16533178]
[54]
Jung, K.A.; Kwak, M.K. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules, 2010, 15(10), 7266-7291.
[http://dx.doi.org/10.3390/molecules15107266] [PMID: 20966874]
[55]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 89-116.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046] [PMID: 16968214]
[56]
Wakabayashi, N.; Slocum, S.L.; Skoko, J.J.; Shin, S.; Kensler, T.W. When NRF2 talks, who’s listening? Antioxid. Redox Signal., 2010, 13(11), 1649-1663.
[http://dx.doi.org/10.1089/ars.2010.3216] [PMID: 20367496]
[57]
Trivedi, P.P.; Jena, G.B. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis. Food Chem. Toxicol., 2013, 59, 339-355.
[http://dx.doi.org/10.1016/j.fct.2013.06.019] [PMID: 23793040]
[58]
Trivedi, P.P.; Jena, G.B.; Tikoo, K.B.; Kumar, V. Melatonin modulated autophagy and Nrf2 signaling path-ways in mice with colitis-associated colon carcinogenesis. Mol. Carcinog., 2016, 55(3), 255-267.
[http://dx.doi.org/10.1002/mc.22274] [PMID: 25598500]
[59]
Hofmann, M.A.; Drury, S.; Fu, C.; Qu, W.; Taguchi, A.; Lu, Y.; Avila, C.; Kambham, N.; Bierhaus, A.; Nawroth, P.; Neurath, M.F.; Slattery, T.; Beach, D.; McClary, J.; Nagashima, M.; Morser, J.; Stern, D.; Schmidt, A.M. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell, 1999, 97(7), 889-901.
[http://dx.doi.org/10.1016/S0092-8674(00)80801-6] [PMID: 10399917]
[60]
Deo, P.; Keogh, J.B.; Price, N.J.; Clifton, P.M. Effects of weight loss on advanced glycation end products in subjects with and without diabetes: a preliminary report. Int. J. Environ. Res. Public Health, 2017, 14(12)E1553
[http://dx.doi.org/10.3390/ijerph14121553] [PMID: 29232895]
[61]
Papagrigoraki, A.; Maurelli, M.; Del Giglio, M.; Gisondi, P.; Girolomoni, G. advanced glycation end products in the pathogenesis of psoriasis. Int. J. Mol. Sci., 2017, 18(11)E2471
[http://dx.doi.org/10.3390/ijms18112471] [PMID: 29156622]
[62]
Barbosa, J.H.P.; Oliveira, S.L.; Seara, L.T. O papel dos produtos finais da glicação avançada (AGEs) no desencadeamento das complicações vasculares do diabetes. Arq. Bras. Endocrinol. Metabol, 2008, 52(6), 940-950.
[http://dx.doi.org/10.1590/S0004-27302008000600005]
[63]
Ahmad, S.; Khan, H.; Siddiqui, Z.; Khan, M.Y.; Rehman, S.; Shahab, U.; Godovikova, T.; Silnikov, V. Moinuddin. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin. Cancer Biol., 2018, 49, 44-55.
[http://dx.doi.org/10.1016/j.semcancer.2017.07.001] [PMID: 28712719]
[64]
Drenth, H.; Zuidema, S.U.; Krijnen, W.P.; Bautmans, I.; van der Schans, C.; Hobbelen, H. Advanced glycation endproducts are associated with the presence and severity of paratonia in early stage alzheimer disease. J Am Med Dir Assoc., 2017, 18(7), e612 636-e637-636.
[http://dx.doi.org/10.1016/j.jamda.2017.04.004] [PMID: 28558966]
[65]
Santos, J.C.D.F.; Valentim, I.B.; de Araújo, O.R.P. Ataide, Tda.R.; Goulart, M.O.F. Development of nonalcoholic hepatopathy: contributions of oxidative stress and advanced glycation end products. Int. J. Mol. Sci., 2013, 14(10), 19846-19866.
[http://dx.doi.org/10.3390/ijms141019846] [PMID: 24084729]
[66]
Ott, J.J.; Stevens, G.A.; Groeger, J.; Wiersma, S.T. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine, 2012, 30(12), 2212-2219.
[http://dx.doi.org/10.1016/j.vaccine.2011.12.116] [PMID: 22273662]
[67]
Liu, Y.; Qu, Y.; Wang, R.; Ma, Y.; Xia, C.; Gao, C.; Liu, J.; Lian, K.; Xu, A.; Lu, X.; Sun, L.; Yang, L.; Lau, W.B.; Gao, E.; Koch, W.; Wang, H.; Tao, L. The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury. Am. J. Physiol. Endocrinol. Metab., 2012, 303(7), E841-E852.
[http://dx.doi.org/10.1152/ajpendo.00075.2012] [PMID: 22829582]
[68]
Arnér, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem., 2000, 267(20), 6102-6109.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01701.x] [PMID: 11012661]
[69]
Lee, H.; Park, J.R.; Kim, W.J.; Sundar, I.K.; Rahman, I.; Park, S.M.; Yang, S.R. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. FASEB J., 2017, 31(5), 2076-2089.
[http://dx.doi.org/10.1096/fj.201601155R] [PMID: 28148566]
[70]
Buelna-Chontal, M.; Zazueta, C. Redox activation of Nrf2 & NF-κB: a double end sword? Cell. Signal., 2013, 25(12), 2548-2557.
[http://dx.doi.org/10.1016/j.cellsig.2013.08.007] [PMID: 23993959]
[71]
Budanov, A.V. The role of tumor suppressor p53 in the antioxidant defense and metabolism. Subcell. Biochem., 2014, 85, 337-358.
[http://dx.doi.org/10.1007/978-94-017-9211-0_18] [PMID: 25201203]
[72]
Lepage, P.; Colombet, J.; Marteau, P.; Sime-Ngando, T.; Doré, J.; Leclerc, M. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut, 2008, 57(3), 424-425.
[http://dx.doi.org/10.1136/gut.2007.134668] [PMID: 18268057]
[73]
Kawaguchi, T.; Mori, M.; Saito, K.; Suga, Y.; Hashimoto, M.; Sako, M.; Yoshimura, N.; Uo, M.; Danjo, K.; Ikenoue, Y.; Oomura, K.; Shinozaki, J.; Mitsui, A.; Kajiura, T.; Suzuki, M.; Takazoe, M. Food antigen-induced immune responses in Crohn’s disease patients and experimental colitis mice. J. Gastroenterol., 2015, 50(4), 394-405.
[http://dx.doi.org/10.1007/s00535-014-0981-8] [PMID: 25099432]
[74]
Tak, P.P.; Firestein, G.S. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11.
[http://dx.doi.org/10.1172/JCI11830] [PMID: 11134171]
[75]
Ntoufa, S.; Vilia, M.G.; Stamatopoulos, K.; Ghia, P.; Muzio, M. Toll-like receptors signaling: A complex network for NF-κB activation in B-cell lymphoid malignancies. Semin. Cancer Biol., 2016, 39, 15-25.
[http://dx.doi.org/10.1016/j.semcancer.2016.07.001] [PMID: 27402288]
[76]
Tóbon-Velasco, J.C.; Cuevas, E.; Torres-Ramos, M.A. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol. Disord. Drug Targets, 2014, 13(9), 1615-1626.
[http://dx.doi.org/10.2174/1871527313666140806144831] [PMID: 25106630]
[77]
Horvath, B.; Liu, G.; Wu, X.; Lai, K.K.; Shen, B.; Liu, X. Overexpression of p53 predicts colorectal neoplasia risk in patients with inflammatory bowel disease and mucosa changes indefinite for dysplasia. Gastroenterol. Rep. (Oxf.), 2015, 3(4), 344-349.
[http://dx.doi.org/10.1093/gastro/gov022] [PMID: 26063242]
[78]
Tang, Y.; Chen, A. Curcumin eliminates the effect of advanced glycation end-products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Lab. Invest., 2014, 94(5), 503-516.
[http://dx.doi.org/10.1038/labinvest.2014.42] [PMID: 24614199]
[79]
Hong, Y.; An, Z. Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-kappaB signaling. Arch. Pharm. Res., 2018, 41(6), 655-663.
[http://dx.doi.org/10.1007/s12272-015-0662-z] [PMID: 26391026]
[80]
Collison, K.S.; Parhar, R.S.; Saleh, S.S.; Meyer, B.F.; Kwaasi, A.A.; Hammami, M.M.; Schmidt, A.M.; Stern, D.M.; Al-Mohanna, F.A. RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs). J. Leukoc. Biol., 2002, 71(3), 433-444.
[PMID: 11867681]
[81]
Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[82]
Zhou, L.Z.; Johnson, A.P.; Rando, T.A. NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic. Biol. Med., 2001, 31(11), 1405-1416.
[http://dx.doi.org/10.1016/S0891-5849(01)00719-5] [PMID: 11728812]
[83]
Djavaheri-Mergny, M.; Javelaud, D.; Wietzerbin, J.; Besançon, F. NF-kappaB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFalpha-treated Ewing sarcoma cells. FEBS Lett., 2004, 578(1-2), 111-115.
[http://dx.doi.org/10.1016/j.febslet.2004.10.082] [PMID: 15581626]
[84]
Kairisalo, M.; Korhonen, L.; Blomgren, K.; Lindholm, D. X-linked inhibitor of apoptosis protein increases mitochondrial antioxidants through NF-kappaB activation. Biochem. Biophys. Res. Commun., 2007, 364(1), 138-144.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.115] [PMID: 17936246]
[85]
Krajka-Kuzniak, V.; Paluszczak, J.; Baer-Dubowska, W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol. Rep., 2017, 69(3), 393-402.
[http://dx.doi.org/10.1016/j.pharep.2016.12.011]
[86]
Ahmed, S.M.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 585-597.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[87]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014360438
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[88]
Fedorova, M.; Bollineni, R.C.; Hoffmann, R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom. Rev., 2014, 33(2), 79-97.
[http://dx.doi.org/10.1002/mas.21381] [PMID: 23832618]
[89]
Dalle-Donne, I.; Giustarini, D.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation in human diseases. Trends Mol. Med., 2003, 9(4), 169-176.
[http://dx.doi.org/10.1016/S1471-4914(03)00031-5] [PMID: 12727143]
[90]
Harding, S.V.; Rideout, T.C.; Jones, P.J. Evidence for using alpha-lipoic acid in reducing lipoprotein and inflammatory related atherosclerotic risk. J. Diet. Suppl., 2012, 9(2), 116-127.
[http://dx.doi.org/10.3109/19390211.2012.683136] [PMID: 22607646]
[91]
Zen, K.; Chen, C.X.; Chen, Y.T.; Wilton, R.; Liu, Y. Receptor for advanced glycation endproducts mediates neutrophil migration across intestinal epithelium. J. Immunol., 2007, 178(4), 2483-2490.
[http://dx.doi.org/10.4049/jimmunol.178.4.2483] [PMID: 17277156]
[92]
Brazil, J.C.; Louis, N.A.; Parkos, C.A. The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease. Inflamm. Bowel Dis., 2013, 19(7), 1556-1565.
[http://dx.doi.org/10.1097/MIB.0b013e318281f54e] [PMID: 23598816]
[93]
Yilmaz, Y.; Yonal, O.; Eren, F.; Atug, O.; Hamzaoglu, H.O. Serum levels of soluble receptor for advanced glycation endproducts (sRAGE) are higher in ulcerative colitis and correlate with disease activity. J. Crohn’s Colitis, 2011, 5(5), 402-406.
[http://dx.doi.org/10.1016/j.crohns.2011.03.011] [PMID: 21939913]
[94]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Kurita-Nakamura, Y.; Matsui, T.; Yoshida, T.; Imaizumi, T. Serum levels of sRAGE, the soluble form of receptor for advanced glycation end products, are associated with inflammatory markers in patients with type 2 diabetes. Mol. Med., 2007, 13(3-4), 185-189.
[http://dx.doi.org/10.2119/2006-00090.Nakamura] [PMID: 17592553]
[95]
Malícková, K.; Kalousová, M.; Fucíková, T.; Bortlík, M.; Duricová, D.; Komárek, V.; Zima, T.; Janatková, I.; Lukás, M. Anti-inflammatory effect of biological treatment in patients with inflammatory bowel diseases: calprotectin and IL-6 changes do not correspond to sRAGE changes. Scand. J. Clin. Lab. Invest., 2010, 70(4), 294-299.
[http://dx.doi.org/10.3109/00365513.2010.485648] [PMID: 20446880]
[96]
Leach, S.T.; Yang, Z.; Messina, I.; Song, C.; Geczy, C.L.; Cunningham, A.M.; Day, A.S. Serum and mucosal S100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with inflammatory bowel disease. Scand. J. Gastroenterol., 2007, 42(11), 1321-1331.
[http://dx.doi.org/10.1080/00365520701416709] [PMID: 17852869]
[97]
ALJahdali N.; Gadonna-Widehem, P.; Delayre-Orthez, C.; Marier, D.; Garnier, B.; Carbonero, F.; Anton, P.M. Repeated oral exposure to N ε-Carboxymethyllysine, a maillard reaction product, alleviates gut microbiota dysbiosis in colitic mice. Dig. Dis. Sci., 2017, 62(12), 3370-3384.
[http://dx.doi.org/10.1007/s10620-017-4767-8] [PMID: 28965192]
[98]
Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut, 2001, 48(4), 526-535.
[http://dx.doi.org/10.1136/gut.48.4.526] [PMID: 11247898]
[99]
Castaño-Milla, C.; Chaparro, M.; Gisbert, J.P. Systematic review with meta-analysis: the declining risk of colorectal cancer in ulcerative colitis. Aliment. Pharmacol. Ther., 2014, 39(7), 645-659.
[http://dx.doi.org/10.1111/apt.12651] [PMID: 24612141]
[100]
Lakatos, L.; Mester, G.; Erdelyi, Z.; David, G.; Pandur, T.; Balogh, M.; Fischer, S.; Vargha, P.; Lakatos, P.L. Risk factors for ulcerative colitis-associated colorectal cancer in a Hungarian cohort of patients with ulcerative colitis: results of a population-based study. Inflamm. Bowel Dis., 2006, 12(3), 205-211.
[http://dx.doi.org/10.1097/01.MIB.0000217770.21261.ce] [PMID: 16534422]
[101]
Beaugerie, L.; Itzkowitz, S.H. Cancers complicating inflammatory bowel disease. N. Engl. J. Med., 2015, 372(15), 1441-1452.
[http://dx.doi.org/10.1056/NEJMra1403718] [PMID: 25853748]
[102]
Burisch, J.; Jess, T.; Martinato, M.; Lakatos, P.L. ECCO -EpiCom. The burden of inflammatory bowel disease in Europe. J. Crohn’s Colitis, 2013, 7(4), 322-337.
[http://dx.doi.org/10.1016/j.crohns.2013.01.010] [PMID: 23395397]
[103]
Rutter, M.D.; Saunders, B.P.; Wilkinson, K.H.; Rumbles, S.; Schofield, G.; Kamm, M.A.; Williams, C.B.; Price, A.B.; Talbot, I.C.; Forbes, A. Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology, 2006, 130(4), 1030-1038.
[http://dx.doi.org/10.1053/j.gastro.2005.12.035] [PMID: 16618396]
[104]
Jurjus, A.; Eid, A.; Al Kattar, S.; Zeenny, M.N.; Gerges-Geagea, A.; Haydar, H.; Hilal, A.; Oueidat, D.; Matar, M.; Tawilah, J.; Hussein, I.H.; Schembri-Wismayer, P.; Cappello, F.; Tomasello, G.; Leone, A.; Jurjus, R.A. Inflammatory bowel disease, colorectal cancer and type 2 diabetes mellitus: The links. BBA Clin., 2015, 5, 16-24.
[http://dx.doi.org/10.1016/j.bbacli.2015.11.002] [PMID: 27051585]
[105]
Kryston, T.B.; Georgiev, A.B.; Pissis, P.; Georgakilas, A.G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res., 2011, 711(1-2), 193-201.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.12.016] [PMID: 21216256]
[106]
Hamouda, H.E.; Zakaria, S.S.; Ismail, S.A.; Khedr, M.A.; Mayah, W.W. p53 antibodies, metallothioneins, and oxidative stress markers in chronic ulcerative colitis with dysplasia. World J. Gastroenterol., 2011, 17(19), 2417-2423.
[http://dx.doi.org/10.3748/wjg.v17.i19.2417] [PMID: 21633642]
[107]
Lin, J.A.; Wu, C.H.; Yen, G.C. Methylglyoxal displays colorectal cancer-promoting properties in the murine models of azoxymethane and CT26 isografts. Free Radic. Biol. Med., 2018, 115, 436-446.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.020] [PMID: 29269310]
[108]
Kuniyasu, H.; Chihara, Y.; Kondo, H. Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int. J. Cancer, 2003, 104(6), 722-727.
[http://dx.doi.org/10.1002/ijc.11016] [PMID: 12640679]
[109]
Liang, H.; Zhong, Y.; Zhou, S.; Peng, L. Knockdown of RAGE expression inhibits colorectal cancer cell invasion and suppresses angiogenesis in vitro and in vivo. Cancer Lett., 2011, 313(1), 91-98.
[http://dx.doi.org/10.1016/j.canlet.2011.08.028] [PMID: 21945853]
[110]
Sakellariou, S.; Fragkou, P.; Levidou, G.; Gargalionis, A.N.; Piperi, C.; Dalagiorgou, G.; Adamopoulos, C.; Saetta, A.; Agrogiannis, G.; Theohari, I.; Sougioultzis, S.; Tsioli, P.; Karavokyros, I.; Tsavaris, N.; Kostakis, I.D.; Zizi-Serbetzoglou, A.; Vandoros, G.P.; Patsouris, E.; Korkolopoulou, P. Clinical significance of AGE-RAGE axis in colorectal cancer: associations with glyoxalase-I, adiponectin receptor expression and prognosis. BMC Cancer, 2016, 16, 174.
[http://dx.doi.org/10.1186/s12885-016-2213-5] [PMID: 26931562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy