Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Microchip Electrophoresis and Bioanalytical Applications

Author(s): Ebru Buyuktuncel*

Volume 15, Issue 2, 2019

Page: [109 - 120] Pages: 12

DOI: 10.2174/1573412914666180831100533

Price: $65

Abstract

Microanalytical systems have aroused great interest because they can analyze extremely small sample volumes, improve the rate and throughput of chemical and biochemical analysis in a way that reduces costs. Microchip Electrophoresis (ME) represents an effective separation technique to perform quick analytical separations of complex samples. It offers high resolution and significant peak capacity. ME is used in many areas, including biology, chemistry, engineering, and medicine. It is established the same working principles as Capillary Electrophoresis (CE). It is possible to perform electrophoresis in a more direct and convenient way in a microchip. Since the electric field is the driving force of the electrodes, there is no need for high pressure as in chromatography. The amount of the voltage that is applied in some electrophoresis modes, e.g. Micelle Electrokinetic Chromatography (MEKC) and Capillary Zone Electrophoresis (CZE), mainly determines separation efficiency. Therefore, it is possible to apply a higher electric field along a considerably shorter separation channel, hence it is possible to carry out ME much quicker.

Keywords: Microchip electrophoresis, fabrication of microchips, characteristics of microchip electrophoresis, bioanalytical applications, Electroosmotic Flow (EOF), EOF mobility.

Graphical Abstract

[1]
Wu, D.P.; Qin, J.H.; Lin, B.C. Electrophoretic separations on microfluidic chips. J. Chromatogr. A, 2008, 1184(1-2), 542-559.
[2]
Henry, C.S. Microchip capillary electrophoresis: an introduction. Methods Mol. Biol., 2006, 339, 1-10.
[3]
Gilman, S.D.; Chapman, P.J. Measuring electroosmotic flow in microchips and capillaries. Methods Mol. Biol., 2006, 339, 187-202.
[4]
Shen, H.J.; Lin, C.H. Comparison of the use of anionic and cationic surfactants for the separation of steroids based on MEKC and sweeping-MEKC modes. Electrophoresis, 2006, 27(5-6), 1255-1262.
[5]
Makamba, H.; Kim, J.H.; Lim, K.; Park, N.; Hahn, J.H. Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis, 2003, 24(21), 3607-3619.
[6]
Whitesides, G.M. The origins and the future of microfluidics. Nature, 2006, 442(7101), 368-373.
[7]
Sia, S.K.; Whitesides, G.M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis, 2003, 24(21), 3563-3576.
[8]
Ding, Y.S.; Garcia, C.D. Determination of nonsteroidal anti-inflammatory drugs in serum by microchip capillary electrophoresis with electrochemical detection. Electroanalysis, 2006, 18(22), 2202-2209.
[9]
He, F.Y.; Liu, A.L.; Xia, X.H. Poly(dimethylsiloxane) microchip capillary electrophoresis with electrochemical detection for rapid measurement of acetaminophen and its hydrolysate. Anal. Bioanal. Chem., 2004, 379(7-8), 1062-1067.
[10]
Vlckova, M.; Schwarz, M.A. Determination of cationic neurotransmitters and metabolites in brain homogenates by microchip electrophoresis and carbon nanotube-modified amperometry. J. Chromatogr. A, 2007, 1142(2), 214-221.
[11]
Saylor, R.A.; Reid, E.A.; Lunte, S.M. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway. Electrophoresis, 2015, 36(16), 1912-1919.
[12]
Gomez-Sjoberg, R.; Leyrat, A.A.; Pirone, D.M.; Chen, C.S.; Quake, S.R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem., 2007, 79(22), 8557-8563.
[13]
Troska, P.; Chudoba, R.; Danc, L.; Bodor, R.; Horciciak, M.; Tesarova, E.; Masar, M. Determination of nitrite and nitrate in cerebrospinal fluid by microchip electrophoresis with microsolid phase extraction pre-treatment. J. Chromatogr. B., 2013, 930, 41-47.
[14]
Freitas, C.B.; Moreira, R.C.; Tavares, M.G.D.; Coltro, W.K.T. Monitoring of nitrite, nitrate, chloride and sulfate in environmental samples using electrophoresis microchips coupled with contactless conductivity detection. Talanta, 2016, 147, 335-341.
[15]
Noblitt, S.D.; Schwandner, F.M.; Hering, S.V.; Collett, J.L.; Henry, C.S. High-sensitivity microchip electrophoresis determination of inorganic anions and oxalate in atmospheric aerosols with adjustable selectivity and conductivity detection. J. Chromatogr. A, 2009, 1216(9), 1503-1510.
[16]
Jayarajah, C.N.; Skelley, A.M.; Fortner, A.D.; Mathies, R.A. Analysis of neuroactive amines in fermented beverages using a portable microchip capillary electrophoresis system. Anal. Chem., 2007, 79(21), 8162-8169.
[17]
Culbertson, C.T.; Mickleburgh, T.G.; Stewart-James, S.A.; Sellens, K.A.; Pressnall, M. Micro total analysis systems: fundamental advances and biological applications. Anal. Chem., 2014, 86(1), 95-118.
[18]
Szekely, L.; Guttman, A. New advances in microchip fabrication for electrochromatography. Electrophoresis, 2005, 26(24), 4590-4604.
[19]
Dolnik, V.; Liu, S.R.; Jovanovich, S. Capillary electrophoresis on microchip. Electrophoresis, 2000, 21(1), 41-54.
[20]
Lacher, N.A.; Lunte, S.M.; Martin, R.S. Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device. Anal. Chem., 2004, 76(9), 2482-2491.
[21]
Kim, J.H.; Kang, C.J.; Kim, Y.S. Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection. Biosens. Bioelectron., 2005, 20(11), 2314-2317.
[22]
Qin, D.; Xia, Y.N.; Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc., 2010, 5(3), 491-502.
[23]
Weibel, D.B.; Whitesides, G.M. Applications of microfluidics in chemical biology. Curr. Opin. Chem. Biol., 2006, 10(6), 584-591.
[24]
Liang, R.P.; Meng, X.Y.; Liu, C.M.; Qiu, J.D. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis, 2011, 32(23), 3331-3340.
[25]
de Campos, R.P.S.; Yoshida, I.V.P.; da Silva, J.A.F. Surface modification of PDMS microchips with poly(ethylene glycol) derivatives for mu TAS applications. Electrophoresis, 2014, 35(16), 2346-2352.
[26]
McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.K.; Schueller, O.J.A.; Whitesides, G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000, 21(1), 27-40.
[27]
Whitesides, G.M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng., 2001, 3, 335-373.
[28]
Alrifaiy, A.; Lindahl, O.A.; Ramser, K. Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers (Basel), 2012, 4(3), 1349-1398.
[29]
Ngashangva, L.; Ukita, Y.; Takamura, Y. Development of programmable biosensor using solid phase peptide synthesis on microchip. Jpn. J. Appl. Phys., 2014, 53(5)
[30]
Sun, Y.; Kwok, Y.C. Polymeric microfluidic system for DNA analysis. Anal. Chim. Acta, 2006, 556(1), 80-96.
[31]
Lobo, E.D.; Duarte, L.D.; Braga, L.E.D.; Gobbi, A.L.; de Jesus, D.P.; Coltro, W.K.T. High fidelity prototyping of PDMS electrophoresis microchips using laser-printed masters. Microsyst. Technol., 2015, 21(6), 1345-1352.
[32]
Kim, M.S.; Cho, S.I.; Lee, K.N.; Kim, Y.K. Fabrication of microchip electrophoresis devices and effects of channel surface properties on separation efficiency. Sens. Actuators B Chem., 2005, 107(2), 818-824.
[33]
Williams, K.R.; Gupta, K.; Wasilik, M. Etch rates for micromachining processing - Part II. J. Microelectromech. Syst., 2003, 12(6), 761-778.
[34]
Lacher, N.A.; Garrison, K.E.; Martin, R.S.; Lunte, S.M. Microchip capillary electrophoresis/electrochemistry. Electrophoresis, 2001, 22(12), 2526-2536.
[35]
Wang, J.; Tian, B.M.; Sahlin, E. Integrated electrophoresis chips/amperometric detection with sputtered gold working electrodes. Anal. Chem., 1999, 71(17), 3901-3904.
[36]
Zhang, C.X.; Manz, A. Narrow sample channel injectors for capillary electrophoresis on microchips. Anal. Chem., 2001, 73(11), 2656-2662.
[37]
Wenclawiak, B.W.; Puschl, R. Sample injection for capillary electrophoresis on a micro fabricated device/on chip CE injection. Anal. Lett., 2006, 39(1), 3-16.
[38]
Slentz, B.E.; Penner, N.A.; Regnier, F. Sampling BIAS at channel junctions in gated flow injection on chips. Anal. Chem., 2002, 74(18), 4835-4840.
[39]
Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev., 2013, 113(4), 2550-2583.
[40]
Vlckova, M.; Kalman, F.; Schwarz, M.A. Pharmaceutical applications of isoelectric focusing on microchip with imaged UV detection. J. Chromatogr. A, 2008, 1181(1-2), 145-152.
[41]
Schrott, W.; Nebyla, M.; Pribyl, M.; Snita, D. Detection of immunoglobulins in a laser induced fluorescence system utilizing polydimethysiloxane microchips with advanced surface and optical properties. Biomicrofluidics, 2011, 5(1)
[42]
Huynh, B.H.; Fogarty, B.A.; Nandi, P.; Lunte, S.A. A microchip electrophoresis device with on-line microdialysis sampling and on-chip sample derivatization by naphthalene 2, 3-dicarboxaldehyde/2-mercaptoethanoI for amino acid and peptide analysis. J. Pharmaceut. Biomed., 2006, 42(5), 529-534.
[43]
Nandi, P.; Desaias, D.P.; Lunte, S.M. Development of a PDMS-based microchip electrophoresis device for continuous online in vivo monitoring of microdialysis samples. Electrophoresis, 2010, 31(8), 1414-1422.
[44]
Greif, D.; Galla, L.; Ros, A.; Anselmetti, D. Single cell analysis in full body quartz glass chips with native UV laser-induced fluorescence detection. J. Chromatogr. A, 2008, 1206(1), 83-88.
[45]
Schulze, P.; Ludwig, M.; Kohler, F.; Belder, D. Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis. Anal. Chem., 2005, 77(5), 1325-1329.
[46]
Oborny, N.J.; Costa, E.E.M.; Suntornsuk, L.; Abreu, F.C.; Lunte, S.M. Evaluation of a portable microchip electrophoresis fluorescence detection system for the analysis of amino acid neurotransmitters in brain dialysis samples. Anal. Sci., 2016, 32(1), 35-40.
[47]
Nuchtavorn, N.; Suntornsuk, W.; Lunte, S.M.; Suntornsuk, L. Recent applications of microchip electrophoresis to biomedical analysis. J. Pharm. Biomed. Anal., 2015, 113, 72-96.
[48]
Sainiemi, L.; Sikanen, T.; Kostiainen, R. Integration of fully microfabricated, three-dimensionally sharp electrospray ionization tips with microfluidic glass chips. Anal. Chem., 2012, 84(21), 8973-8979.
[49]
Li, X.T.; Xiao, D.; Ou, X.M.; McCullm, C.; Liu, Y.M. A microchip electrophoresis-mass spectrometric platform for fast separation and identification of enantiomers employing the partial filling technique. J. Chromatogr. A, 2013, 1318, 251-256.
[50]
He, X.W.; Chen, Q.S.; Zhang, Y.D.; Lin, J.M. Recent advances in microchip-mass spectrometry for biological analysis. Trac-. Trends in Anal. Chem., 2014, 53, 84-97.
[51]
Wang, X.; Yi, L.; Mukhitov, N.; Schrell, A.M.; Dhumpa, R.; Roper, M.G. Microfluidics-to-mass spectrometry: A review of coupling methods and applications. J. Chromatogr. A, 2015, 1382, 98-116.
[52]
Mellors, J.S.; Jorabchi, K.; Smith, L.M.; Ramsey, J.M. Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal. Chem., 2010, 82(3), 967-973.
[53]
Sikanen, T.; Aura, S.; Franssila, S.; Kotiaho, T.; Kostiainen, R. Microchip capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins using uncoated Ormocomp microchips. Anal. Chim. Acta, 2012, 711, 69-76.
[54]
Blasco, A.J.; Barrigas, I.; Gonzalez, M.C.; Escarpa, A. Fast and simultaneous detection of prominent natural antioxidants using analytical microsystems for capillary electrophoresis with a glassy carbon electrode: A new gateway to food environments. Electrophoresis, 2005, 26(24), 4664-4673.
[55]
Vandaveer, W.R.; Pasas-Farmer, S.A.; Fischer, D.J.; Frankenfeld, C.N.; Lunte, S.M. Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis, 2004, 25(21-22), 3528-3549.
[56]
Saylor, R.A.; Reid, E.A.; Lunte, S.M. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway. Electrophoresis, 2015, 36(16), 1912-1919.
[57]
Scott, D.E.; Grigsby, R.J.; Lunte, S.M. Microdialysis sampling coupled to microchip electrophoresis with integrated amperometric detection on an all-glass substrate. ChemPhysChem, 2013, 14(10), 2288-2294.
[58]
Hulvey, M.K.; Frankenfeld, C.N.; Lunte, S.M. Separation and detection of peroxynitrite using microchip electrophoresis with amperometric detection. Anal. Chem., 2010, 82(5), 1608-1611.
[59]
Gunasekara, D.B.; Hulvey, M.K.; Lunte, S.M. In-channel amperometric detection for microchip electrophoresis using a wireless isolated potentiostat. Electrophoresis, 2011, 32(8), 832-837.
[60]
Fischer, D.J.; Hulvey, M.K.; Regel, A.R.; Lunte, S.M. Amperometric detection in microchip electrophoresis devices: Effect of electrode material and alignment on analytical performance. Electrophoresis, 2009, 30(19), 3324-3333.
[61]
Guan, Q.; Noblitt, S.D.; Henry, C.S. Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants. Electrophoresis, 2012, 33(18), 2875-2883.
[62]
Li, X.C.; Chen, Z.G.; Yang, F.; Pan, J.B.; Li, Y.B. Development of a microchip-pulsed electrochemical method for rapid determination of L-DOPA and tyrosine in Mucuna pruriens. J. Sep. Sci., 2013, 36(9-10), 1590-1596.
[63]
Wu, Y.Y.; Lin, J.M. Determination of phenol in landfill leachate by using microchip capillary electeophoresis with end-channel amperometric detection. J. Sep. Sci., 2006, 29(1), 137-143.
[64]
Wang, J.; Chen, G.; Wang, M.; Chatrathi, M.P. Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst, 2004, 129(6), 512-515.
[65]
Ding, Y.S.; Ayon, A.; Garcia, C.D. Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis. Anal. Chim. Acta, 2007, 584(2), 244-251.
[66]
Vazquez, M.; Frankenfeld, C.; Coltro, W.K.T.; Carrilho, E.; Diamond, D.; Lunte, S.M. Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips. Analyst, 2010, 135(1), 96-103.
[67]
Peteu, S.F.; Whitman, B.W.; Galligan, J.J.; Swain, G.M. Electrochemical detection of peroxynitrite using hemin-PEDOT functionalized boron-doped diamond microelectrode. Analyst, 2016, 1415, 1796-1806.
[68]
Xu, J.J.; Wang, A.J.; Chen, H.Y. Electrochemical detection modes for microchip capillary electrophoresis. Trac-. Trends Analyt. Chem., 2007, 26(2), 125-132.
[69]
Pumera, M.; Wang, J.; Opekar, F.; Jelinek, I.; Feldman, J.; Lowe, H.; Hardt, S. Contactless conductivity detector for microchip capillary electrophoresis. Anal. Chem., 2002, 74(9), 1968-1971.
[70]
Coltro, W.K.T.; Lima, R.S.; Segato, T.P.; Carrilho, E.; de Jesus, D.P.; do Lago, C.L.; da Silva, J.A.F. Capacitively coupled contactless conductivity detection on microfluidic systems-ten years of development. Anal. Methods, 2012, 4(1), 25-33.
[71]
Chen, Z.G.; Li, Q.W.; Li, O.L.; Zhou, X.; Lan, Y.; Wei, Y.F.; Mo, J.Y. A thin cover glass chip for contactless conductivity detection in microchip capillary electrophoresis. Talanta, 2007, 71(5), 1944-1950.
[72]
Pumera, M. Contactless conductivity detection for microfluidics: Designs and applications. Talanta, 2007, 74(3), 358-364.
[73]
Gaudry, A.J.; Breadmore, M.C.; Guijt, R.M. In-plane alloy electrodes for capacitively coupled contactless conductivity detection in poly(methylmethacrylate) electrophoretic chips. Electrophoresis, 2013, 34(20-21), 2980-2987.
[74]
Kuban, P.; Hauser, P.C. Effects of the cell geometry and operating parameters on the performance of an external contactless conductivity detector for microchip electrophoresis. Lab Chip, 2005, 5(4), 407-415.
[75]
Liu, J.S.; Xu, F.; Wang, S.F.; Chen, Z.G.; Pan, J.B.; Ma, X.R.; Jia, X.K.; Xu, Z.; Liu, C.; Wang, L.D. A polydimethylsiloxane electrophoresis microchip with a thickness controllable insulating layer for capacitatively coupled contactless conductivity detection. Electrochem. Commun., 2012, 25, 147-150.
[76]
Law, W.S.; Kuban, P.; Zha, J.H.; Li, S.F.Y.; Hauser, P.C. Determination of vitamin C and preservatives in beverages by conventional capillary electrophoresis and microchip electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis, 2005, 26(24), 4648-4655.
[77]
Zhao, J.; Chen, Z.G.; Li, X.C.; Pan, J.B. A novel microchip based on indium tin oxide coated glass for contactless conductivity detection. Talanta, 2011, 85(5), 2614-2619.

© 2025 Bentham Science Publishers | Privacy Policy