Review Article

超微粒子暴露对儿童哮喘急性发作的影响:Meta分析

卷 20, 期 4, 2019

页: [412 - 420] 页: 9

弟呕挨: 10.2174/1389450119666180829114252

价格: $65

摘要

背景:空气污染是哮喘急性发作的主要原因。大多数研究表明,暴露于粗颗粒物质和细颗粒物质与哮喘急性发作有关。超细颗粒(UFP,空气动力学直径≤0.1μm)是最小的空气传播颗粒,能够深入肺部。毒理学研究表明,暴露于UFP可能对呼吸系统健康产生严重影响。然而,关于UFP暴露对儿童哮喘急性发作影响的流行病学证据仍不清楚。 目的:我们进行了一项荟萃分析,以定量评估接触UFPs对儿童哮喘急性发作的影响。 方法:我们搜索了四个数据库进行流行病学研究,直到2018年3月20日。使用固定效应模型估算每10000颗粒/ cm3的汇集比值比(OR)和95%置信区间(95%CI)。还进行了亚组分析,敏感性分析以及Begg和Egger的回归。 结果:8项中高质量研究共计51542项事件符合纳入标准。暴露于UFPs显示与儿童哮喘急性发作呈正相关[OR(95%CI):1.070(1.037,1.104)],哮喘相关急诊科就诊增加[OR(95%CI):1.111(1.055,1.170)],和哮喘相关的住院[OR(95%CI):1.045(1.004,1.088)]并且与长期滞后的儿童哮喘急性发作有更强的关联[OR(95%CI):1.060(1.039,1.082)]。检测到低异质性和无发表偏倚。 结论:暴露于UFP可能会增加哮喘急性发作的风险,并可能与长期滞后的儿童哮喘急性发作密切相关。

关键词: 超细颗粒,哮喘,儿童,荟萃分析,暴露,危险因素。

图形摘要

[1]
Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J 2008; 31: 143-78.
[2]
Halonen JI, Lanki T, Yli-Tuomi T, Kulmala M, Tiittanen P, Pekkanen J. Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax 2008; 63: 635-41.
[3]
O’Connor GT, Neas L, Vaughn B, et al. Acute respiratory health effects of air pollution on children with asthma in US inner cities. J Allergy Clin Immunol 2008; 121: 1133-9.e1.
[4]
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311: 622-7.
[5]
Li N, Georas S, Alexis N, et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 2016; 138: 386-96.
[6]
Gauderman WJ, Urman R, Avol E, et al. Association of improved air quality with lung development in children. N Engl J Med 2015; 372: 905-13.
[7]
Andersen ZJ, Loft S, Ketzel M, et al. Ambient air pollution triggers wheezing symptoms in infants. Thorax 2008; 63: 710-6.
[8]
Andersen ZJ, Wahlin P, Raaschou-Nielsen O, Ketzel M, Scheike T, Loft S. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark. Occup Environ Med 2008; 65: 458-66.
[9]
Evans KA, Halterman JS, Hopke PK, Fagnano M, Rich DQ. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children. Environ Res 2014; 129: 11-9.
[10]
Iskandar A, Andersen ZJ, Bonnelykke K, Ellermann T, Andersen KK, Bisgaard H. Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children. Thorax 2012; 67: 252-7.
[11]
Samoli E, Atkinson RW, Analitis A, et al. Differential health effects of short-term exposure to source-specific particles in London, U.K. Environ Int 2016; 97: 246-53.
[12]
Tiittanen P, Timonen KL, Ruuskanen J, Mirme A, Pekkanen J. Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. Eur Respir J 1999; 13: 266-73.
[13]
Clifford S, Mazaheri M, Salimi F, Ezz WN, Yeganeh B, Low-Choy S, et al. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ Int 2018; 114: 167-80.
[14]
Heinzerling A, Hsu J, Yip F. Respiratory Health Effects of Ultrafine Particles in Children: A Literature Review. Water Air Soil Pollut 2016; 227: pii: 32.
[15]
Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339: b2535.
[16]
Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 2000; 283: 2008-12.
[17]
Wells GA, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in Meta-Analysis2000. Available from.http://www.ohri.ca/ programs/clinical_epidemiology/oxford.asp
[18]
Mustafic H, Jabre P, Caussin C, et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 2012; 307: 713-21.
[19]
Rostom A, Dubé C, Cranney A, et al. Rockville (MD): Agency for Healthcare Research and Quality (US); (Evidence Reports/ Technology Assessments, No. 104.) Appendix D. Quality Assessment Forms. Celiac Disease 2004.https:// www.ncbi.nlm.nih.gov/books/NBK35156/
[20]
Samoli E, Andersen ZJ, Katsouyanni K, et al. Exposure to ultrafine particles and respiratory hospitalisations in five European cities. Eur Respir J 2016; 48: 674-82.
[21]
Stafoggia M, Schneider A, Cyrys J, et al. Association between short-term exposure to ultrafine particles and mortality in eight European urban areas. Epidemiology 2017; 28: 172-80.
[22]
Anderson H, Atkinson R, Peacock J, Marston L, Konstantinou K. Meta-analysis of time-series studies and panel studies of Particulate Matter (PM) and ozone (O3). Report of a WHO Task group 2004; 1-68.
[23]
Atkinson RW, Kang S, Anderson HR, Mills IC, Walton HA. Epidemiological time series studies of PM 2.5 and daily mortality and hospital admissions: A systematic review and meta-analysis. Thorax 2014; 69: 660-5.
[24]
Zhang S, Li G, Tian L, Guo Q, Pan X. Short-term exposure to air pollution and morbidity of COPD and asthma in East Asian area: A systematic review and meta-analysis. Environ Res 2016; 148: 15-23.
[25]
Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. Cochrane Database Syst Rev 2008; 5: S38.
[26]
Seagroatt V, Stratton I. Bias in meta-analysis detected by a simple, graphical test. Test had 10% false positive rate. BMJ 1998; 316: 470.
[27]
Duval S, Tweedie R. A nonparametric “Trim and Fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc 2000; 95: 89-98.
[28]
Particles HR. P on U Understanding the health effects of ambient ultrafine particles. Health Effects Institute 2013; p. 122.
[29]
Kadoya C, Lee B-W, Ogami A, et al. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes. Nanotoxicology 2016; 10: 194-203.
[30]
Kendall M, Brown L, Trought K. Molecular adsorption at particle surfaces: a PM toxicity mediation mechanism. Inhal Toxicol 2004; 16: 99-105.
[31]
Yeh H-C, Muggenburg BA, Harkema JR. In vivo deposition of inhaled ultrafine particles in the respiratory tract of rhesus monkeys. Aerosol Sci Technol 1997; 27: 465-70.
[32]
Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 2008; 44: 1689-99.
[33]
Araujo JA, Nel AE. Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Part Fibre Toxicol 2009; 6: 24.
[34]
Chan JKW, Kodani SD, Charrier JG, et al. Age-specific effects on rat lung glutathione and antioxidant enzymes after inhaling ultrafine soot. Am J Respir Cell Mol Biol 2013; 48: 114-24.
[35]
Chen EY, Garnica M, Wang Y-C, Mintz AJ, Chen C-S, Chin W-C. A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Part Fibre Toxicol 2012; 9: 2.
[36]
Wang X, Podila R, Shannahan JH, Rao AM, Brown JM. Intravenously delivered graphene nanosheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis. Int J Nanomedicine 2013; 8: 1733-48.
[37]
Nel AE, Diaz-Sanchez D, Ng D, Hiura T, Saxon A. Enhancement of allergic infla mmation by the interaction between diesel exhaust particles and the immune system. J Allergy Clin Immunol 1998; 102: 539-54.
[38]
Merrifield A, Schindeler S, Jalaludin B, Smith W. Health effects of the September 2009 dust storm in Sydney, Australia: Did emergency department visits and hospital admissions increase? Environ Health 2013; 12: 32.
[39]
Taj T, Malmqvist E, Stroh E, Oudin Åström D, Jakobsson K, Oudin A. Short-term associations between air pollution concentrations and respiratory health-comparing primary health care visits, hospital admissions, and emergency department visits in a multi-municipality study. Int J Environ Res Public Health 2017; 14: pii: E587.
[40]
Ferin J, Oberdörster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 1992; 6: 535-42.
[41]
Stölzel M, Breitner S, Cyrys J, et al. Daily mortality and particulate matter in different size classes in Erfurt, Germany. J Expo Sci Environ Epidemiol 2007; 17: 458-67.
[42]
Alessandrini F, Schulz H, Takenaka S, et al. Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung. J Allergy Clin Immunol 2006; 117: 824-30.
[43]
Schaumann F, Frömke C, Dijkstra D, et al. Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: Results of a double-blinded randomized cross-over clinical pilot study. Part Fibre Toxicol 2014; 11: 39.
[44]
Wichmann HE, Spix C, Tuch T, et al. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: Role of particle number and particle mass. Res Rep Health Eff Inst 2000; 5-86.
[45]
Benor S, Alcalay Y, Domany KA, et al. Ultrafine particle content in exhaled breath condensate in airways of asthmatic children. J Breath Res 2015; 9: 026001.
[46]
Kim J-L, Elfman L, Wieslander G, Ferm M, Torén K, Norbäck D. Respiratory Health among Korean Pupils in Relation to Home, School and Outdoor Environment. J Korean Med Sci 2011; 26: 166-73.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy