[1]
Li X, Kristin MK, Leif T, Ingar O. Systemic diseases caused by oral infection. Clin Microbiol Rev 2000; 13(4): 547-58.
[2]
Portenier I, Waltimo TMT, Haapasalo M. Enterococcus faecalis - the root canal survivor and ‘star’ in posttreatment disease. Endod Topics 2003; 6: 135-59.
[3]
Pinheiro ET, Gomes BPFA, Drucker DB, Zaia AA, Ferraz CCR, Souza-Filho FJ. Antimicrobial susceptibility of Enterococcus faecalis isolated from canals of root filled teeth with periapical lesions. Int Endod J 2004; 37: 756-63.
[4]
Togay SO, Keskin AC, Acik L, Temiz A. Virulence genes, antibiotic resistance and plasmid profiles of Enterococcus faecalis and Enterococcus faecium from naturally fermented Turkish foods. J Appl Microbiol 2010; 109: 1084-92.
[5]
Stuart CH, Schwartz SC, Beeson TJ, Owatz CB. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J Endod 2006; 32(2): 93-8.
[6]
Perdih A, Hrast M, Barreteau H, Gobec S, Wolber G, Solmajer T. Inhibitor design strategy based on an enzyme structural flexibility: A case of bacterial MurD ligase. J Chem Inf Model 2014; 54: 1451-66.
[7]
Hrast M, Sosic I, Sink R, Grobec S. Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg Chem 2014; 55: 2-15.
[8]
Baum EZ, Montenegro DA, Licata L, et al. Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob Agents Chemother 2001; 45(11): 3182-8.
[9]
Eschenburg S, Kabsch W, Healy ML, Scho¨nbrunn E. A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J Biol Chem 2003; 278(49): 49215-22.
[10]
Hrast M. Rozˇman K, Jukic M, Patin D, Gobec S, Sova M. Synthesis and structure-activity relationship study of novel quinazolinone-based inhibitors of MurA. Bioorg Med Chem Lett 2017; 27: 3529-33.
[11]
Deepak SM, Patil PP, Aher SJ, Ware AL. Mur-A: A critical target behind new antibacterial drug discovery Indo American Journal of Pharm Research, 2014; 4(01).
[12]
Sonkar A, Shukla H, Shukla R, Kalita J, Pandey T, Tripathi T. UDP-N-Acetylglucosamine enolpyruvyl transferase (MurA) of Acinetobacter baumannii (AbMurA): Structural and functional properties. Int J Biol Macromol 2017; 97: 106-14.
[13]
Orms NF. A computational and synthetic investigation of potential inhibitors of the MurA enzyme: The effect of alkane chain length on the action of small molecule drug candidates. Department of Chemistry, Centre College, 600 West Walnut Street, Danville, KY 40422.
[14]
Ambrosio SR, Furtado NAJC, de Oliviera DCR, et al. Antimicrobial activity of kaurane diterpenes against oral pathogens. Z Naturforsch 2008; 63c: 326-30.
[15]
Kurnia D, Akiyama K, Hayashi H. 29-Norcucurbitacin derivatives isolated from the Indonesian medicinal plant Phaleria macrocarpa (Scheff.) Boerl. Bioscience Biotechnology Biochemistry 2008; 72: 618-20.
[16]
Kurnia D, Akiyama K, Hayashi H. 10-Phenyl-[11]-cytochalasans from Indonesian Mushroom Microporellus subsessilis. Phytochemistry 2007; 68: 618-20.
[17]
Kurnia D, Sumiarsa D, Dharsono HDA, Satari MH. Bioactive compounds isolated from Indonesian epiphytic plant of Sarang Semut and their antibacterial activity against pathogenic oral bacteria. Nat Prod Commun 2017; 12(8): 1201-4.
[18]
Hanh PH, Phan NHT, Thuan NTD, et al. Two new simple iridoids from the ant-plant Myrmecodia tuberosa and their antimicrobial effects. Nat Prod Res 2015; 10: 1-5.
[19]
Hasanuddin Krisnadi Sr. Gandamihardja S, Kurnia D, HD Adhita D. Terpenoid bioactive compound isolated from Papua ant nest induces the apoptosis of human ovarian cell lines (SKOV-3) and increasing caspase-9 activity. Am J Res Communication 2015; 3(9): ISSN: 2325-4076.
[20]
Bashari MH, Hidayat S, Ruswandi Y, et al. The n-hexane fraction of Myrmecodia pendans inhibits cell survival and proliferation in colon cancer cell line. Int J Pharma Sci 2018; 10(1): 108-12.
[21]
Hertiani T, Sasmito E. Sumardi, Ulfah M. Preliminary study on immunomodulatory effect of Sarang Semut tubers Myrmecodia tuberosa and Myrmecodia pendens. J Biol Sci 2010; 10(3): 136-41.
[22]
Malinda Y, Satari MH, Tarawan VM, Kurnia D. Antibacterial of flavonoids from Myrmecodia pendens (Sarang Semut) against Streptococcus mutans ATCC 25175. Open Access J Med Aromat
Plants (OAJMAP) 2016; 7(2): 1-10.
[23]
Andersen ØM, Markham KR. Flavonoids: Chemistry, biochemistry,
and applications Taylor & Francis Group 2006.
[24]
Shua-Hua Qi, Da-Gang Wu, Yun-Bao Ma, Xiao-Dong LUO A novel falvame from Carapa guianensis. Acta Bot Sin 2003; 45(9): 1129-33.
[25]
de Oliveiraa MCC, de Carvalhoa MG, da Silvaa CJ, Werleb AA. New biflavonoid and other constituents from Luxemburgia nobilis (EICHL). J Braz Chem Soc 2000; 13(1): 119-23.
[26]
Dewick PM. Medicinal natural product: A biosynthetic approach Second Edition School of Pharmaceutical Sciences University of Nottingham, UK John Wiley & Sons, Ltd 2002.
[27]
Shahat AA. Procyanidins from Adansonia digitata. Pharm Biol 2006; 44(6): 445-50.
[28]
Qi SI, Wu DG, Ma YB, Luo XD. A novel flavane from Carapa guianensis. Acta Bot Sin 2003; 45(9): 1129-33.
[29]
Lin HH, Lin YT. Flavonoids from the leaves of Loranthus kaoi (Chao) Kiu. J Food Drug Anal 1999; 7(3): 185-90.
[30]
Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 2004; 39: 1-15.
[31]
Donovana JL, Luthriaa DL, Strempleb P, Waterhousea AL. Analysis of (1)-catechin, (2)-epicatechin and their 39- and 49-O methylated analogs a comparison of sensitive methods. J Chromatogr B 1999; 726(9): 277-83.
[32]
Clinical and laboratory standards institute (CLSI - formerly
NCCLS). Performance standards for antimicrobial disk susceptibility
tests; Approved Standard, 11th ed.; Clinical and Laboratory
Standards Institute: Wayne, PA, USA. 2012.
[33]
Clinical and laboratory standards institute document M7-A8.
Methods for dilution antimicrobial susceptibility tests for bacteria
that grow aerobically; Approved Standard, 9thed.; Clinical and Laboratory
Standards Institute: Wayne, PA, USA 2012.
[34]
Olesen SH, Ingles DJ, Yang Y, Schönbrunn E. Differential antibacterial properties of the MurA inhibitors terreic acid and fosfomycin. J Basic Microbiol 2014; 54(4): 322-6.
[35]
Liu Y, Breukink E. Review: The membrane steps of bacterial cell wall synthesis as antibiotic targets. Antibiotics 2016; 5: 28.
[36]
Baum EZ, Montenegro DA, Licata L, Turchi I, et al. Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob Agents Chemother 2001; 45: 3182-8.
[37]
Francisco GD, Li Z, Albright JD, Eudy NH, et al. Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis. Bioorg Med Chem Lett 2004; 14: 235-8.
[38]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids:
An overview The Scientific World Journal 2013 16 pages.
[39]
Roz mana K, Lešnik S, Brus B, et al. Discovery of new MurA inhibitors using induced-fit simulation and docking. Bioorg Med Chem Lett 2017; 27: 944-9.
[40]
Silver LL. Fosfomycin: Mechanism and resistance. Cold Spring Harb Perspect Med 2017; 7a025262
[41]
Zhu Jin-Yi, Yang Y, Han H, et al. Functional Consequence of Covalent Reaction of Phosphoenolpyruvate with UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). J Biol Chem 2012; 287(16): 12657-67.
[42]
Zoeiby AE, Sanschagrin F, Levesque RC. Micro Review: Structure and function of the Mur enzymes: Development of novel inhibitors. Mol Microbiol 2003; 47(1): 1-12.
[43]
Bachelier A, Mayer R, Klein CD. Sesquiterpene lactones are potent and irreversible inhibitors of the antibacterial target enzyme MurA. Bioorg Med Chem Lett 2006; 16: 5605-9.
[44]
Steinbach A, Scheidig AJ, Klein CD. The unusual binding mode of cnicin to the antibacterial target enzyme MurA revealed by X-ray crystallography. J Med Chem 2008; 51: 5143-7.
[45]
Shigetomi K, Shoji K, Mitsuhashi S, Ubukata M. The antibacterial properties of 6-tuliposide B: Synthesis of 6-tuliposide B analogues and structure-activity relationship. Phytochemistry 2010; 71312324
[46]
Mendgen T, Scholz T, Klein CD. Structure-activity relationships of tulipalines, tuliposides, and related compounds as inhibitors of MurA. Bioorg Med Chem Lett 2010; 20: 5757-62.
[47]
Kapitan OB, Ambarsari L, and Fallah S. Inhibition docking simulation of zerumbone, gingerglycolipid B, and curzerenone compound of Zingiber zerumbet from Timor Island against MurA Enzyme. J Applied Chem Sci 2016; 3: 279-88.
[48]
Eniyan K, Kumar A, Rayasam GV, Perdih A, Bajpai U. Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis. Sci Rep 2016; 6: 35134.
[49]
Eschenburg S, Priestman MA, Abdul-Latif FA, Delachaume C, Fassy F, Scho¨nbrunn E. A novel inhibitor that suspends the induced fit mechanism of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA). J Biol Chem 2005; 280(14): 14070-5.
[50]
Bernardi D, Adams H, Behr M, et al. New inhibitors of MurA, an antibacterial target enzyme Endotherm Life Science Molecules Science-Park II, D66123 Saarbrucken, Germany
[51]
Chang CM, Chern J, Chen MY, et al. Avenaciolides: Potential MurA-targeted inhibitors against peptidoglycan biosynthesis in methicillin resistant Staphylococcus aureus (MRSA). J Am Chem Soc 2015; 137(1): 267-75.