[1]
Vinodhini, R.; Vijaya, M.S. Label sequence learning based protein
secondary structure prediction using hydrophobicity scales. in proceedings
of the international conference on soft computing for
problem solving (SocProS 2011), Springer, India. December 20-22,
2011-2012; pp. 611-622.
[2]
Levitt, M.; Chothia, C. Structural patterns in globular proteins. Nature, 1976, 261(5561), 552-558.
[3]
Marks, D.S.; Hopf, T.A.; Sander, C. Protein structure prediction from sequence variation. Nat. Biotechnol., 2012, 30(11), 1072-1080.
[4]
Nakashima, H.; Nishikawa, K.; Ooi, T. The folding type of a protein is relevant to the amino acid composition. J. Biochem., 1986, 99(1), 153-162.
[5]
Chou, K.C. A novel approach to predicting protein structural classes in a (20–1)-D amino acid composition space. Proteins: Struct. Func. Bioinform., 1995, 21(4), 319-344.
[6]
Garza-Fabre, M.; Rodriguez-Tello, E.; Toscano-Pulido, G. Constraint-handling through multi-objective optimization: The hydrophobic-polar model for protein structure prediction. Comput. Oper. Res., 2015, 53, 128-153.
[7]
Bu, W.S.; Feng, Z.P.; Zhang, Z.; Zhang, C.T. Prediction of protein(domain) structural classes based on amino‐acid index. The FEBS J., 1999, 266(3), 1043-1049.
[8]
Ding, S.; Zhang, S.; Li, Y.; Wang, T. A novel protein structural classes prediction method based on predicted secondary structure. Biochimie, 2012, 94(5), 1166-1171.
[9]
Gordon, G.A. Extrinsic electromagnetic fields, low frequency (phonon) vibrations, and control of cell function: A non-linear resonance system. J. Biomed. Sci. Eng., 2008, 1(3), 152.
[10]
Madkan, A.; Blank, M.; Elson, E.; Chou, K.C.; Geddis, M.S.; Goodman, R. Steps to the clinic with ELF EMF. Nat. Sci., 2009, 1(3), 157.
[11]
Kurgan, L.A.; Homaeian, L. Prediction of structural classes for protein sequences and domains-impact of prediction algorithms, sequence representation and homology, and test procedures on accuracy. Patt. Rec., 2006, 39(12), 2323-2343.
[12]
Zhou, G.P. An intriguing controversy over protein structural class prediction. J. Protein Chem., 1998, 17(8), 729-738.
[13]
Chou, K.C. A key driving force in determination of protein structural classes. Biochem. Biophys. Res. Commun., 1999, 264(1), 216-224.
[14]
Sahu, S.S.; Panda, G. A novel feature representation method based on Chou’s pseudo amino acid composition for protein structural class prediction. Comput. Biol. Chem., 2010, 34(5), 320-327.
[15]
Tanford, C. Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Am. Chem. Soc., 1962, 84(22), 4240-4247.
[16]
Hopp, T.P.; Woods, K.R. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. , 1981, 78(6), 3824-3828.
[17]
Veljkovic, V.; Cosic, I.; Lalovic, D. Is it possible to analyze DNA and protein sequences by the methods of digital signal processing? IEEE Trans. Biomed. Eng., 1985, 5, 337-341.
[18]
Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process., 1996, 44(4), 998-1001.
[19]
Sejdić, E.; Djurović, I.; Jiang, J. Time-frequency feature representation using energy concentration: An overview of recent advances. Dig. Sig. Proc., 2009, 19(1), 153-183.
[20]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
[21]
Vapnik, V. Statistical learning theory; Wiley: New York, 1998.
[22]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
[23]
Bylander, T. Estimating generalization error on two-class datasets using out-of-bag estimates. Mach. Learn., 2002, 48(1-3), 287-297.
[24]
Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines.
ACM Trans. Inte. Sys. Technol., (TIST), 2011, 2(3), 27.
[25]
Zhang, S.; Ding, S.; Wang, T. High-accuracy prediction of protein structural class for low-similarity sequences based on predicted secondary structure. Biochimie, 2011, 93(4), 710-714.