[1]
Herwaldt BL. Leishmaniasis. Lancet 1999; 354(9185): 1191-9.
[2]
Alvar J, Vélez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012; 7(5)e35671
[3]
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: A review. F1000 Res 2017; 6: 750.
[4]
Steverding D. The history of leishmaniasis. Parasit Vectors 2017; 10(1): 82.
[5]
Desjeux P. Leishmaniasis. Public health aspects and control. Clin Dermatol 1996; 14(5): 417-23.
[6]
Liévin-Le Moal V, Loiseau PM. Leishmania hijacking of the macrophage intracellular compartments. FEBS J 2016; 283(4): 598-607.
[7]
Handler MZ, Patel PA, Kapila R, Al-Qubati Y, Schwartz RA. Cutaneous and mucocutaneous leishmaniasis: Differential diagnosis, diagnosis, histopathology, and management. J Am Acad Dermatol 2015; 73(6): 911-926, 927-928.
[8]
de Freitas EO, Leoratti FM, Freire-de-Lima CG, et al. The contribution of immune evasive mechanisms to parasite persistence in visceral leishmaniasis. Front Immunol 2016; 7: 153.
[9]
Monzote L. Current treatment of leishmaniasis: A review. The Open Antimicrobial Agents J 2009; 1(1): 9-19.
[10]
Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005; 366(9496): 1561-77.
[11]
Pandey BD, Pun SB, Kaneko O, Pandey K, Hirayama K. Case report: Expansion of visceral leishmaniasis to the western hilly part of Nepal. Am J Trop Med Hyg 2011; 84(1): 107-8.
[12]
Copeland NK, Aronson NE. Leishmaniasis: Treatment updates and clinical practice guidelines review. Curr Opin Infect Dis 2015; 28(5): 426-37.
[13]
Brittingham A, Morrison CJ, McMaster WR, McGwire BS, Chang K-P, Mosser DM. Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J Immunol 1995; 155(6): 3102-11.
[14]
Joshi PB, Kelly BL, Kamhawi S, Sacks DL, McMaster WR. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 2002; 120(1): 33-40.
[15]
Lieke T, Nylén S, Eidsmo L, et al. Leishmania surface protein gp63 binds directly to human natural killer cells and inhibits proliferation. Clin Exp Immunol 2008; 153(2): 221-30.
[16]
Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol 2012; 2: 72.
[17]
Tosi MF. Innate immune responses to infection. J Allergy Clin Immunol 2005; 116(2): 241-9.
[18]
Russell DG. The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes. Eur J Biochem 1987; 164(1): 213-21.
[19]
Chaudhuri G, Chaudhuri M, Pan A, Chang KP. Surface acid proteinase (gp63) of Leishmania mexicana. A metalloenzyme capable of protecting liposome-encapsulated proteins from phagolysosomal degradation by macrophages. J Biol Chem 1989; 264(13): 7483-9.
[20]
Kulkarni MM, McMaster WR, Kamysz E, Kamysz W, Engman DM, McGwire BS. The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. Mol Microbiol 2006; 62(5): 1484-97.
[21]
Hallé M, Gomez MA, Stuible M, et al. The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. J Biol Chem 2009; 284(11): 6893-908.
[22]
Contreras I, Gómez MA, Nguyen O, Shio MT, McMaster RW, Olivier M. Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloprotease GP63. PLoS Pathog 2010; 6(10)e1001148
[23]
Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 2005; 18(2): 293-305.
[24]
Thiakaki M, Kolli B, Chang K-P, Soteriadou K. Down-regulation of gp63 level in Leishmania amazonensis promastigotes reduces their infectivity in BALB/c mice. Microbes Infect 2006; 8(6): 1455-63.
[25]
Akhoundi M, Downing T, Votýpka J, et al. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57: 1-29.
[26]
Chen D-Q, Kolli BK, Yadava N, et al. Episomal expression of specific sense and antisense mRNAs in Leishmania amazonensis: modulation of gp63 level in promastigotes and their infection of macrophages in vitro. Infect Immun 2000; 68(1): 80-6.
[27]
Hassani K, Shio MT, Martel C, Faubert D, Olivier M. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. PLoS One 2014; 9(4)e95007
[28]
Aagaard L, Rossi JJ. RNAi therapeutics: Principles, prospects and challenges. Adv Drug Deliv Rev 2007; 59(2-3): 75-86.
[29]
Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999; 286(5441): 950-2.
[30]
Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 2015; 4e252
[31]
Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys 2013; 42: 217-39.
[32]
Gavrilov K, Saltzman WM. Therapeutic siRNA: Principles, challenges, and strategies. Yale J Biol Med 2012; 85(2): 187-200.
[33]
Dyawanapelly S, Ghodke SB, Vishwanathan R, Dandekar P, Jain R. RNA interference-based therapeutics: molecular platforms for infectious diseases. J Biomed Nanotechnol 2014; 10(9): 1998-2037.
[34]
Wu J, Liu B, Wu H, et al. A gold nanoparticle platform for the delivery of functional TGF-β1 siRNA into cancer cells. J Biomed Nanotechnol 2016; 12(4): 800-10.
[35]
Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115(2): 199-208.
[36]
Heale BS, Soifer HS, Bowers C, Rossi JJ. siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res 2005; 33(3)e30
[37]
Patzel V, Rutz S, Dietrich I, Köberle C, Scheffold A, Kaufmann SH. Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nat Biotechnol 2005; 23(11): 1440-4.
[38]
Wheeler DL, Barrett T, Benson DA, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2006; 35(Suppl. 1): D5-D12.
[39]
Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7(1): 539.
[40]
Naito Y, Yoshimura J, Morishita S, Ui-Tei K. siDirect 2.0: Updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 2009; 10(1): 392.
[41]
Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004; 32(3): 936-48.
[42]
Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22(3): 326-30.
[43]
Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 2004; 316(4): 1050-8.
[44]
Ui-Tei K, Naito Y, Nishi K, Juni A, Saigo K. Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res 2008; 36(22): 7100-9.
[45]
Ahmed F, Ansari HR, Raghava GP. Prediction of guide strand of microRNAs from its sequence and secondary structure. BMC Bioinformatics 2009; 10(1): 105.
[46]
Karlin S, Altschul SF. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci USA 1990; 87(6): 2264-8.
[47]
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: A better web interface. Nucleic Acids Res 2008; 36(Suppl. 2): W5-9.
[48]
Kibbe WA. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res 2007; 35(Suppl. 2): W43-6.
[49]
Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The vienna RNA websuite. Nucleic Acids Res 2008; 36(Suppl. 2): W70-4.
[50]
Mann M, Wright PR, Backofen R. IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 2017; 45(W1)W435-9
[51]
Markham NR, Zuker M. DINAMelt web server for nucleic acid melting prediction Nucleic Acids Res 2005 33(Web Server issue): W577-81.
[52]
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31(13): 3406-15.
[53]
Chitsaz H, Salari R, Sahinalp SC, Backofen R. A partition function algorithm for interacting nucleic acid strands. Bioinformatics 2009; 25(12): i365-73.
[54]
Zheng C, Zheng M, Gong P, et al. Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy. Biomaterials 2013; 34(13): 3431-8.
[55]
Mathews DH. Predicting a set of minimal free energy RNA secondary structures common to two sequences. Bioinformatics 2005; 21(10): 2246-53.
[56]
Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL. Thermodynamics of RNA-RNA binding. Bioinformatics 2006; 22(10): 1177-82.
[57]
Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL. Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 2006; 1(1): 3.