[1]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspec- tives, current development trends, and future directions. Bioorg. Med. Chem., 2017, 26(10), 2700-2707.
[2]
Otvos, L., Jr; Vetter, S.W.; Koladia, M.; Knappe, D.; Schmidt, R.; Ostorhazi, E.; Kovalszky, I.; Bionda, N.; Cudic, P.; Surmacz, E.; Wade, J.D.; Hoffmann, R. The designer leptin antagonist peptide Allo-aca compensates for short serum half-life with very tight bind- ing to the receptor. Amino Acids, 2014, 46(4), 873-882.
[3]
Werle, M.; Bernkop-Schnurch, A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids, 2006, 30(4), 351-367.
[4]
Cavaco, M.; Castanho, M.; Neves, V. Peptibodies: An elegant solution for a long-standing problem. Biopolymers, 2017, e23095.
[5]
Shimamoto, G.; Gegg, C.; Boone, T.; Queva, C. Peptibodies: A flexible alternative format to antibodies. MAbs, 2012, 4(5), 586-59.
[6]
McGregor, D.P. Discovering and improving novel peptide thera-peutics. Curr. Opin. Pharmacol., 2008, 8(5), 616-619.
[7]
Sleep, D.; Cameron, J.; Evans, L.R. Albumin as a versatile plat-form for drug half-life extension. Biochim. Biophys. Acta, 2013, 1830(12), 5526-5534.
[8]
Wu, B.; Lewis, L.D.; Harvey, R.D.; Rasmussen, E.; Gamelin, E.; Sun, Y.N.; Friberg, G.; Koyner, J.L.; Dowlati, A.; Maitland, M.L. A Pharmacokinetic and Safety Study of Trebananib, an Fc-Fusion Peptibody, in Patients With Advanced Solid Tumors and Varying Degrees of Renal Dysfunction. Clin. Pharmacol. Ther., 2017, 102(2), 313-320.
[9]
Wu, B.; Sun, Y.N. Pharmacokinetics of Peptide-Fc fusion proteins. J. Pharm. Sci., 2014, 103(1), 53-64.
[10]
Nichol, J.L. AMG 531: An investigational thrombopoiesis-stimulating peptibody. Pediatr. Blood Cancer, 2006, 47(5)(Suppl.), 723-725.
[11]
Bugelski, P.J.; Capocasale, R.J.; Makropoulos, D.; Marshall, D.; Fisher, P.W.; Lu, J.; Achuthanandam, R.; Spinka-Doms, T.; Kwok, D.; Graden, D.; Volk, A.; Nesspor, T.; James, I.E.; Huang, C. CNTO 530: molecular pharmacology in human UT-7EPO cells and pharmacokinetics and pharmacodynamics in mice. J. Biotechnol., 2008, 134(1-2), 171-180.
[12]
Huang, C. Receptor-Fc fusion therapeutics, traps, and MIMETI- BODY technology. Curr. Opin. Biotechnol., 2009, 20(6), 692-699.
[13]
Marquardt, A.; Muyldermans, S.; Przybylski, M. A synthetic camel anti-lysozyme peptide antibody (peptibody) with flexible loop structure identified by high-resolution affinity mass spec- trometry. Chemistry, 2006, 12(7), 1915-1923.
[14]
Szynol, A.; de Haard, J.J.; Veerman, E.C.; de Soet, J.J.; van Nieuw Amerongen, A.V. Design of a peptibody consisting of the antimi- crobial peptide dhvar5 and a llama variable heavy-chain antibody fragment. Chem. Biol. Drug Des., 2006, 67(6), 425-431.
[15]
Molineux, G.; Newland, A. Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia: from bench to bedside. Br. J. Haematol., 2010, 150(1), 9-20.
[16]
Scheen, A.J. Dulaglutide for the treatment of type 2 diabetes. Expert Opin. Biol. Ther., 2017, 17(4), 485-496.
[17]
Lenert, A.; Niewold, T.B.; Lenert, P. Spotlight on blisibimod and its potential in the treatment of systemic lupus erythematosus: evi- dence to date. Drug Des. Devel. Ther., 2017, 11, 747-757.
[18]
Foster, J.S.; Koul-Tiwari, R.; Williams, A.; Martin, E.B.; Richey, T.; Stuckey, A.; Macy, S.; Kennel, S.J.; Wall, J.S. Preliminary
characterization of a novel peptide-Fc-fusion construct for targeting
amyloid deposits. Amyloid., 2017, 24, (sup1), 26-27.
[19]
Zhu, W.; Sun, X.; Zhu, L.; Gan, Y.; Baiwu, R.; Wei, J.; Li, Z.; Li, R.; Sun, J. A Novel BLyS Peptibody Down-Regulates B Cell and T Helper Cell Subsets In vivo and Ameliorates Collagen-Induced Arthritis. Inflammation, 2016, 39(2), 839-848.
[20]
Torchia, J.; Weiskopf, K.; Levy, R. Targeting lymphoma with precision using semisynthetic anti-idiotype peptibodies. Proc. Natl. Acad. Sci. USA, 2016, 113(19), 5376-5381.
[21]
Scheinberg, M.A.; Hislop, C.M.; Martin, R.S. Blisibimod for treatment of systemic lupus erythematosus: with trials you become wiser. Expert Opin. Biol. Ther., 2016, 16(5), 723-733.
[22]
Monk, B.J.; Poveda, A.; Vergote, I.; Raspagliesi, F.; Fujiwara, K.; Bae, D.S.; Oaknin, A.; Ray-Coquard, I.; Provencher, D.M.; Karlan, B.Y.; Lhomme, C.; Richardson, G.; Rincon, D.G.; Coleman, R.L.; Marth, C.; Brize, A.; Fabbro, M.; Redondo, A.; Bamias, A.; Ma, H.; Vogl, F.D.; Bach, B.A.; Oza, A.M. Final results of a phase 3 study of trebananib plus weekly paclitaxel in recurrent ovarian can- cer (TRINOVA-1): Long-term survival, impact of ascites, and pro- gression-free survival-2. Gynecol. Oncol., 2016, 143(1), 27-34.
[23]
Mobergslien, A.; Peng, Q.; Vasovic, V.; Sioud, M. Cancer cell- binding peptide fused Fc domain activates immune effector cells and blocks tumor growth. Oncotarget, 2016, 7(46), 75940-75953.
[24]
SP. D.A.; Mahoney, M.R.; Van Tine, B.A.; Adkins, D.R.; Per-dekamp, M.T.; Condy, M.M.; Luke, J.J.; Hartley, E.W.; Antonescu, C.R.; Tap, W.D.; Schwartz, G.K. Alliance A091103 a phase II study of the angiopoietin 1 and 2 peptibody trebananib for thetreatment of angiosarcoma. Cancer Chemother. Pharmacol., 2015, 75(3), 629-638.
[25]
Sioud, M.; Westby, P.; Olsen, J.K.; Mobergslien, A. Generation of new peptide-Fc fusion proteins that mediate antibody-dependent cellular cytotoxicity against different types of cancer cells. Mol. Ther. Methods Clin. Dev., 2015, 2, 15043.
[26]
Foster, J.S.; Williams, A.D.; Macy, S.; Richey, T.; Stuckey, A.; Wooliver, D.C.; Koul-Tiwari, R.; Martin, E.B.; Kennel, S.J.; Wall, J.S. A peptide-Fc opsonin with pan-amyloid reactivity. Front. Immunol., 2017, 8, 1082.
[27]
Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem., 2013, 20(15), 1985-1996.
[28]
Otvos, L., Jr; Haspinger, E.; La Russa, F.; Maspero, F.; Graziano, P.; Kovalszky, I.; Lovas, S.; Nama, K.; Hoffmann, R.; Knappe, D.; Cassone, M.; Wade, J.; Surmacz, E. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment. BMC Biotechnol., 2011, 11, 90.
[29]
Wu, Z.; Zhou, P.; Li, X.; Wang, H.; Luo, D.; Qiao, H.; Ke, X.; Huang, J. Structural characterization of a recombinant fusion protein by instrumental analysis and molecular modeling. PLoS One, 2013, 8(3), e57642.
[30]
Obexer, R.; Walport, L.J.; Suga, H. Exploring sequence space: Harnessing chemical and biological diversity towards new peptide leads. Curr. Opin. Chem. Biol., 2017, 38, 52-61.
[31]
Ashby, M.; Petkova, A.; Gani, J.; Mikut, R.; Hilpert, K. Use of Peptide Libraries for Identification and optimization of novel antimicrobial peptides. Curr. Top. Med. Chem., 2017, 17(5), 537-553.
[32]
Cwirla, S.E.; Balasubramanian, P.; Duffin, D.J.; Wagstrom, C.R.; Gates, C.M.; Singer, S.C.; Davis, A.M.; Tansik, R.L.; Mattheakis, L.C.; Boytos, C.M.; Schatz, P.J.; Baccanari, D.P.; Wrighton, N.C.; Barrett, R.W.; Dower, W.J. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science, 1997, 276(5319), 1696-1699.
[33]
Zhang, Y.; He, B.; Liu, K.; Ning, L.; Luo, D.; Xu, K.; Zhu, W.; Wu, Z.; Huang, J.; Xu, X. A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo. Signal Transduct. Target. Ther., 2017, 2, 17010.
[34]
Li, T.; Tu, W.; Liu, Y.; Zhou, P.; Cai, K.; Li, Z.; Liu, X.; Ning, N.; Huang, J.; Wang, S.; Huang, J.; Wang, H. A potential therapeutic peptide-based neutralizer that potently inhibits Shiga toxin 2 in vitro and in vivo. Sci. Rep., 2016, 6, 21837.
[35]
He, B.; Mao, C.; Ru, B.; Han, H.; Zhou, P.; Huang, J. Epitope mapping of metuximab on CD147 using phage display and molecular docking. Comput. Math. Methods Med., 2013, 2013, 983829.
[36]
Ning, L.; Li, Z.; Bai, Z.; Hou, S.; He, B.; Huang, J.; Zhou, P. Computational design of antiangiogenic peptibody by fusing human IgG1 Fc fragment and HRH peptide: Structural modeling, energetic analysis, and dynamics simulation of its binding potency to VEGF Receptor. Int. J. Biol. Sci., 2018, 14(8), 930-937.
[37]
Menendez, A.; Scott, J.K. The nature of target-unrelated peptides recovered in the screening of phage-displayed random peptide libraries with antibodies. Anal. Biochem., 2005, 336(2), 145-157.
[38]
Vodnik, M.; Zager, U.; Strukelj, B.; Lunder, M. Phage display: selecting straws instead of a needle from a haystack. Molecules, 2011, 16(1), 790-817.
[39]
Zade, H.M.; Keshavarz, R.; Shekarabi, H.S.Z.; Bakhshinejad, B. Biased selection of propagation-related TUPs from phage display peptide libraries. Amino Acids, 2017, 49(8), 1293-1308.
[40]
Derda, R.; Tang, S.K.; Li, S.C.; Ng, S.; Matochko, W.; Jafari, M.R. Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules, 2011, 16(2), 1776-1803.
[41]
Huang, J.; Ru, B.; Dai, P. Bioinformatics resources and tools for phage display. Molecules, 2011, 16(1), 694-709.
[42]
He, B.; Chai, G.; Duan, Y.; Yan, Z.; Qiu, L.; Zhang, H.; Liu, Z.; He, Q.; Han, K.; Ru, B.; Guo, F.B.; Ding, H.; Lin, H.; Wang, X.; Rao, N.; Zhou, P.; Huang, J. BDB: biopanning data bank. Nucleic Acids Res., 2016, 44(D1), D1127-D1132.
[43]
Huang, J.; Ru, B.; Zhu, P.; Nie, F.; Yang, J.; Wang, X.; Dai, P.; Lin, H.; Guo, F.B.; Rao, N. MimoDB 2.0: A mimotope database and beyond. Nucleic Acids Res., 2012, 40, D271-D277.
[44]
Ru, B.; Huang, J.; Dai, P.; Li, S.; Xia, Z.; Ding, H.; Lin, H.; Guo, F.; Wang, X.; Mimo, D.B. A new repository for mimotope data derived from phage display technology. Molecules, 2010, 15(11), 8279-8288.
[45]
Huang, J.; Ru, B.; Li, S.; Lin, H.; Guo, F.B. SAROTUP: scanner and reporter of target-unrelated peptides. J. Biomed. Biotechnol., 2010, 2010, 101932.
[46]
Ru, B.; Hoen, P.A.; Nie, F.; Lin, H.; Guo, F.B.; Huang, J. PhD7Faster: Predicting clones propagating faster from the Ph.D.-7 phage display peptide library. J. Bioinform. Comput. Biol., 2014, 12(1), 1450005.
[47]
He, B.; Kang, J.; Ru, B.; Ding, H.; Zhou, P.; Huang, J. SABinder: A web service for predicting streptavidin-binding peptides. BioMed Res. Int., 2016, 2016, 9175143.
[48]
Li, N.; Kang, J.; Jiang, L.; He, B.; Lin, H.; Huang, J. PSBinder: A
web service for predicting polystyrene surface-binding peptides. Biomed. Res. Int, 2017, 2017, (2017), 5.
[49]
Huang, J.; Derda, R.; Huang, Y. Phage display informatics. Comput. Math. Methods Med., 2013, 2013, 698395.
[50]
Vanhee, P.; van der Sloot, A.M.; Verschueren, E.; Serrano, L.; Rousseau, F.; Schymkowitz, J. Computational design of peptide ligands. Trends Biotechnol., 2011, 29(5), 231-239.
[51]
Zhou, P.; Zhang, S.; Wang, Y.; Yang, C.; Huang, J. Structural modeling of HLA-B*1502/peptide/carbamazepine/T-cell receptor complex architecture: Implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. J. Biomol. Struct. Dyn., 2016, 34(8), 1806-1817.
[52]
Yang, C.; Zhang, S.; He, P.; Wang, C.; Huang, J.; Zhou, P. Selfbinding peptides: Folding or binding? J. Chem. Inf. Model., 2015, 55(2), 329-342.
[53]
Zhou, P.; Wang, C.; Tian, F.; Ren, Y.; Yang, C.; Huang, J. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J. Comput. Aided Mol. Des., 2013, 27(1), 67-78.
[54]
Zhou, P.; Huang, J.; Tian, F. Specific noncovalent interactions at protein-ligand interface: Implications for rational drug design. Curr. Med. Chem., 2012, 19(2), 226-238.
[55]
Heurich, M.; Altintas, Z.; Tothill, I.E. Computational design of peptide ligands for ochratoxin A. Toxins (Basel), 2013, 5(6), 1202-1218.
[56]
Sun, J.; Feng, J.; Li, Y.; Shen, B. A novel BLyS antagonist peptide designed based on the 3-D complex structure of BCMA and BLyS. Biochem. Biophys. Res. Commun., 2006, 346(4), 1158-1162.
[57]
Wang, S.H.; Yu, J. Structure-based design for binding peptides in anti-cancer therapy. Biomaterials, 2018, 156, 1-15.
[58]
London, N.; Raveh, B.; Movshovitz-Attias, D.; Schueler-Furman, O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins, 2010, 78(15), 3140-3149.
[59]
Sedan, Y.; Marcu, O.; Lyskov, S.; Schueler-Furman, O. Peptiderive server: derive peptide inhibitors from protein-protein interactions. Nucleic Acids Res., 2016, 44(W1), W536-W541.
[60]
Zhao, Y.; Hao, X.; Feng, J.; Shen, B.; Wei, J.; Sun, J. The comparison of BLyS-binding peptides from phage display library and computer-aided design on BLyS-TACI interaction. Int. Immunopharmacol., 2015, 24(2), 219-223.
[61]
Usmani, S.S.; Bedi, G.; Samuel, J.S.; Singh, S.; Kalra, S.; Kumar, P.; Ahuja, A.A.; Sharma, M.; Gautam, A.; Raghava, G.P.S. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One, 2017, 12(7), e0181748.
[62]
Liu, S.; Fan, L.; Sun, J.; Lao, X.; Zheng, H. Computational resources and tools for antimicrobial peptides. J. Pept. Sci., 2017, 23(1), 4-12.
[63]
Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res., 2016, 44(D1), D10941097.
[64]
Agrawal, P.; Bhalla, S.; Usmani, S.S.; Singh, S.; Chaudhary, K.; Raghava, G.P.; Gautam, A. CPPsite 2.0: A repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res., 2016, 44(D1), D1098-D1103.
[65]
Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res., 2015, 43, D837-D843.
[66]
Kumar, R.; Chaudhary, K.; Sharma, M.; Nagpal, G.; Chauhan, J.S.; Singh, S.; Gautam, A.; Raghava, G.P. AHTPDB: A comprehensive platform for analysis and presentation of antihypertensive peptides. Nucleic Acids Res., 2015, 43, D956-D962.
[67]
Mehta, D.; Anand, P.; Kumar, V.; Joshi, A.; Mathur, D.; Singh, S.; Tuknait, A.; Chaudhary, K.; Gautam, S.K.; Gautam, A.; Varshney, G.C.; Raghava, G.P. ParaPep: A web resource for experimentally validated antiparasitic peptide sequences and their structures. Database (Oxford), 2014, 2014, pii bau051.
[68]
Gautam, A.; Chaudhary, K.; Singh, S.; Joshi, A.; Anand, P.; Tuknait, A.; Mathur, D.; Varshney, G.C.; Raghava, G.P. Hemolytik: A database of experimentally determined hemolytic and nonhemolytic peptides. Nucleic Acids Res., 2014, 42, D444-D449.
[69]
Novkovic, M.; Simunic, J.; Bojovic, V.; Tossi, A.; Juretic, D. DADP: The database of anuran defense peptides. Bioinformatics, 2012, 28(10), 1406-1407.
[70]
Vijayakumar, S. PTV, L. ACPP: A web server for prediction and design of anti-cancer peptides. Int. J. Pept. Res. Ther., 2015, 21(1), 99-106.
[71]
Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.C. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7(13), 16895-16909.
[72]
Tang, H.; Su, Z.D.; Wei, H.H.; Chen, W.; Lin, H. Prediction of cell-penetrating peptides with feature selection techniques. Biochem. Biophys. Res. Commun., 2016, 477(1), 150-154.
[73]
Gupta, S.; Sharma, A.K.; Shastri, V.; Madhu, M.K.; Sharma, V.K. Prediction of anti-inflammatory proteins/peptides: An in silico approach. J. Transl. Med., 2017, 15(1), 7.
[74]
Xu, C.; Ge, L.; Zhang, Y.; Dehmer, M.; Gutman, I. Computational prediction of therapeutic peptides based on graph index. J. Biomed. Inform., 2017, 75, 63-69.
[75]
Levin, D.; Golding, B.; Strome, S.E.; Sauna, Z.E. Fc fusion as a platform technology: Potential for modulating immunogenicity. Trends Biotechnol., 2015, 33(1), 27-34.
[76]
Salfeld, J.G. Isotype selection in antibody engineering. Nat. Biotechnol., 2007, 25(12), 1369-1372.
[77]
Saxena, A.; Wu, D. Advances in Therapeutic fc engineering - modulation of IgG-associated effector functions and serum halflife. Front. Immunol., 2016, 7, 580.
[78]
Rodriguez, L.F.; Bustos, R.H.; Zapata, C.D.; Garcia, J.C.; Jauregui, E.; Ashraf, G. Immunogenicity in protein and peptide basedtherapeutics: An overview. Curr. Protein Pept. Sci., 2017, 19(10), 958-971.
[79]
Hermanson, T.; Bennett, C.L.; Macdougall, I.C. Peginesatide for the treatment of anemia due to chronic kidney disease - an unfulfilled promise. Expert Opin. Drug Saf., 2016, 15(10), 1421-1426.
[80]
Koren, E.; De Groot, A.S.; Jawa, V.; Beck, K.D.; Boone, T.; Rivera, D.; Li, L.; Mytych, D.; Koscec, M.; Weeraratne, D.; Swanson, S.; Martin, W. Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin. Immunol., 2007, 124(1), 26-32.
[81]
Huang, J.; Honda, W. CED: A conformational epitope database. BMC Immunol., 2006, 7, 7.
[82]
Zhang, L.; Udaka, K.; Mamitsuka, H.; Zhu, S. Toward more accurate pan-specific MHC-peptide binding prediction: A review of current methods and tools. Brief. Bioinform., 2012, 13(3), 350-364.
[83]
Tang, Q.; Nie, F.; Kang, J.; Ding, H.; Zhou, P.; Huang, J. NIEluter: Predicting peptides eluted from HLA class I molecules. J. Immunol. Methods, 2015, 422, 22-27.
[84]
Moise, L.; Gutierrez, A.; Kibria, F.; Martin, R.; Tassone, R.; Liu, R.; Terry, F.; Martin, B.; De Groot, A.S. iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Hum. Vaccin. Immunother., 2015, 11(9), 2312-2321.
[85]
Vita, R.; Overton, J.A.; Greenbaum, J.A.; Ponomarenko, J.; Clark, D.; Cantrell, J.R.; Wheeler, D.K.; Gabbard, J.L.; Hix, D.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB) 3.0. Nucleic Acids Res., 2015, 43, D405-D412.
[86]
Andreatta, M.; Nielsen, M. Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics, 2016, 32(4), 511-517.
[87]
Potocnakova, L.; Bhide, M.; Pulzova, L.B. An introduction to BCell epitope mapping and in silico epitope prediction. J. Immunol. Res., 2016, 2016, 6760830.
[88]
Creech, A.L.; Ting, Y.S.; Goulding, S.P.; Sauld, J.F.; Barthelme, D.; Rooney, M.S.; Addona, T.A.; Abelin, J.G. The role of mass spectrometry and proteogenomics in the advancement of HLA epitope prediction. Proteomics, 2018, 18(12), e1700259.
[89]
Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 2018, 154(3), 394-406.