Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Ameliorative Effect of Centaurea maroccana and Centaurea acaulis Against Nephrotoxicity Induced by Carbon Tetrachloride

Author(s): Nacera Baali*, Baali Samiya, Bentamen Ali, Benayache Samir, Benayache Fadila and Amedah Souad

Volume 16, Issue 2, 2020

Page: [174 - 180] Pages: 7

DOI: 10.2174/1573407214666180820151905

Price: $65

Abstract

Background: The ability of Centaurea maroccana (C. maroccana) and Centaurea acaulis (C. acaulis) to protect the kidney against CCl4-induced renal toxicity in male rats was investigated. Moreover, the total polyphenols and flavonoids amount and DPPH radical scavenging activity were estimated.

Materials and Methods: Rats were pre-treated orally with C. maroccana and C. acaulis (200 mg/kg, daily for 2 weeks) along with CCl4 (1.5 ml/kg, three times a week for 2 weeks). At the end of the treatment procedure, all rats were sacrificed and renal protective effect of C. maroccana and C. acaulis was evaluated.

Results: Administration of CCl4 alone significantly elevated kidney malondialdehyde, as well as serum creatinine, urea and uric acid. While kidney level of glutathione and catalase were reduced. These were accompanied by glomerular and tubular degenerations and necrosis. Pre-treatment with C. maroccana and C. acaulis ameliorated the above mentioned biochemical parameters and histological changes associated with nephrotoxicity induced by CCl4. Moreover, both studied extracts showed a noticeable total polyphenols and flavonoids amount and antioxidant activity in DPPH assays.

Conclusion: From the results, it is suggested that C. maroccana and C. acaulis extract has the ability to protect kidney against oxidative damages, possibly through the antioxidant effects of their bioactive compounds.

Keywords: Centaurea maroccana, Centaurea acaulis, antioxidant, polyphenols, carbon tetrachloride, nephrotoxicity, oxidative stress.

Graphical Abstract

[1]
Li, Z.; Wei, W.; Chen, B.; Cai, G.; Li, X.; Wang, P.; Tang, J.; Dong, W. The effect of rhCygb on CCl4-induced hepatic fibrogenesis in rat. Sci. Rep., 2016, 6, 23508.
[http://dx.doi.org/10.1038/srep23508] [PMID: 27006085]
[2]
Al-Yahya, M.; Mothana, R.; Al-Said, M. Al-Dosari.; Al-Musayeib, N.; Al-Sohaibani, M.; Parvez, M.K.; Rafatullah, S.. Attenuation of CCl4- induced oxidative stress and hepatonephrotoxicity by Saudi sidr honey in rats. Evid Based Complement Alterna. Med. , 2013, 2013569037
[3]
Saad, E.A. Kidney response to L-arginine treatment of CCl4-induced hepatic injury in mice. Nat. Sci., 2013, 5, 1-6.
[4]
Mehendale, H.M. Tissue repair: an important determinant of final outcome of toxicant-induced injury. Toxicol. Pathol., 2005, 33(1), 41-51.
[http://dx.doi.org/10.1080/01926230590881808] [PMID: 15805055]
[5]
Ustyol, L.; Demirören, K.; Kandemir, I.; Remzi Erten, R.; Bulan, K.; Kaba, S.; Nihat Demir, N.; Mehmet Turan Basunlu, M. Comparative nephroprotective effects of silymarin, n-acetylcysteine, and thymoquinone against CCl4-induced nephrotoxicity in rats. Iran. Red Crescent Med. J., 2017, 19 e37746
[6]
Şahin, A. The Effect of Nigella sativa and vitamine E + selenium in the prevention of liver necrosis experimentally induced with carbon tetrachloride in rats. Turk. J. Vet. Anim. Sci., 2014, 27, 141-152.
[7]
Karabulut-Bulan, O.; Bolkent, S.; Yanardag, R.; Bilgin-Sokmen, B. The role of vitamin C, vitamin E, and selenium on cadmium-induced renal toxicity of rats. Drug Chem. Toxicol., 2008, 31(4), 413-426.
[http://dx.doi.org/10.1080/01480540802383200] [PMID: 18850353]
[8]
Abdel-Hamid, G.A. Effect of vitamin E and selenium against aluminum-induced nephrotoxicity in pregnant rats. Folia Histochem. Cytobiol., 2013, 51(4), 312-319.
[http://dx.doi.org/10.5603/FHC.2013.0042] [PMID: 24497136]
[9]
El-Desoky, G.; Abdelreheem, M. AL-Othman, A.; Alothma, Z.; Mahmoud M.; Yusuf K. Potential hepatoprotective effects of vitamin E and selenium on hepatotoxicity induced by malathion in rats. Afr. J. Pharm. Pharmacol., 2012, 6, 806-813.
[10]
Hismiogullari, A.A.; Hismiogullari, S.E.; Karaca, O.; Sunay, F.B.; Paksoy, S.; Can, M.; Kus, I.; Seyrek, K.; Yavuz, O. The protective effect of curcumin administration on CCl4 induced nephrotoxicity in rats. Pharmacol. Rep., 2015, 67, 410-416.
[http://dx.doi.org/10.1016/j.pharep.2014.10.021] [PMID: 25933946]
[11]
Safhi, M.M. Nephroprotective effect of Zingerone against CCl4-induced renal toxicity in albino mice: Molecular mechanism. Oxid. Med. Cell. Longev., 2018, 20182474831
[http://dx.doi.org/10.1155/2018/2474831] [PMID: 29636837]
[12]
Bentamene, A.; Benayache, S.; Crèche, J.; Bermejo, J.; Benayache, F. Sesquiterpene lactones and phenolic compounds from Centaurea maroccana L. Chem. Nat. Compd., 2007, 43, 749-750.
[http://dx.doi.org/10.1007/s10600-007-0256-1]
[13]
Bentamene, A.; Benayache, S.; Creche, J.; Petit, G.; Bermejo-Barrera, J.; Leon, F.; Benayache, F. A new guaianolide and other sesquiterpene lactones from Centaurea acaulis L. (Asteraceae). Biochem. Syst. Ecol, 2005, 33, 1061e1065
[14]
Bentamene, A.; Boucheham, R.; Baz, M.; Benayache, S.; Creche, J.; Benayache, F. Flavonoid glucosides from Centaurea sphaerocephala. Chem. Nat. Compd., 2010, 46, 452-453.
[http://dx.doi.org/10.1007/s10600-010-9641-2]
[15]
Bicha, S.; Bentamene, A.; Benaissa, O.; Benayache, S.; Garcia, V.; Léon, F.; Brouard, I.; Bermejo, B.; Benayache, F. Flavonoid aglycones from Centaurea maroccana. Chem. Nat. Compd., 2011, 47, 105-106.
[http://dx.doi.org/10.1007/s10600-011-9843-2]
[16]
Korga, A.; Józefczyk, A.; Zgórka, G.; Homa, M.; Ostrowska, M.; Burdan, F.; Dudka, J. Evaluation of the phytochemical composition and protective activities of methanolic extracts of Centaurea borysthenica and Centaurea daghestanica (Lipsky) Wagenitz on cardiomyocytes treated with doxorubicin. Food Nutr. Res., 2017, 61(1)1344077
[http://dx.doi.org/10.1080/16546628.2017.1344077] [PMID: 28747863]
[17]
Singleton, V.L.; Ross, J.A. Colorimetry of total phenolics with phosphor-molybdic-phosphotungstic acid reagent. Am. J. Enol. Vitic., 1965, 16, 144-158.
[18]
Bao, J.; Cai, Y.; Sun, M.; Wang, G.; Corke, H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem., 2005, 53(6), 2327-2332.
[http://dx.doi.org/10.1021/jf048312z] [PMID: 15769176]
[19]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[20]
Rahmat, A.A.; Dar, F.A.; Choudhary, I.M. Protection of CCl4-induced liver and kidney damage by phenolic compounds in leaf extracts of Cnestis ferruginea. Pharmacognosy Res., 2014, 6(1), 19-28.
[http://dx.doi.org/10.4103/0974-8490.122913] [PMID: 24497738]
[21]
Mihara, M.; Uchiyama, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 1978, 86(1), 271-278.
[http://dx.doi.org/10.1016/0003-2697(78)90342-1] [PMID: 655387]
[22]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[23]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[24]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[25]
Baali, N.; Belloum, Z.; Baali, S.; Chabi, B.; Pessemesse, L.; Fouret, G.; Ameddah, S.; Benayache, F.; Benayache, S.; Feillet-Coudray, C.; Cabello, G.; Wrutniak-Cabello, C. Protective activity of total polyphenols from Genista quadriflora Munby and Teucrium polium geyrii Maire in acetaminophen-induced hepatotoxicity in rats. Nutrients, 2016, 8(4), 193.
[http://dx.doi.org/10.3390/nu8040193] [PMID: 27043622]
[26]
Keffous, F.; Belboukhari, N.; Djaradi, H.; Cheriti, A.; Sekkoum, K.; Aboul-Enein, H.Y. Total antioxidant capacity, reducing power and cyclic voltammetry of Zilla macroptera (Brassicaceae) aqueous extract. Curr. Bioact. Compd., 2016, 12, 39-43.
[http://dx.doi.org/10.2174/1573407212666160210230707]
[27]
Al-Sayed, E.; Abdel-Daim, M.M.; Kilany, O.E.; Karonen, M.; Sinkkonen, J. Protective role of polyphenols from Bauhinia hookeri against CCl4-induced hepato and nephrotoxicity in mice. Ren. Fail., 2015, 37, 1198-1207.
[http://dx.doi.org/10.3109/0886022X.2015.1061886] [PMID: 26382171]
[28]
Nwoye, L.O. Protective and therapeutic effects of Chamomilla recutita extract on subacute ethanol intoxication in white albino rats. Afr. J. Biotechnol., 2013, 12, 2378-2385.
[29]
El-Maddawy, Z.K.; Gad, S.B. Hepato-renal protection of silymarin in comparison with vitamin E in rats. Glob. J. Pharmacol., 2012, 6, 236-244.
[30]
Okolo, K.O.; Siminialayi, I.M.; Orisakwe, O.B. Nephroprotective and antioxidant effects of king tuber Oyster medicinal mushroom, Pleurotus tuber-regium (Agaricomycetes), on CCl4-induced nephrotoxicity in male Sprague Dawley Rats. Int. J. Med. Mushrooms, 2018, 20, 419-429.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2018026044] [PMID: 29953357]
[31]
Shah, M.D.; Urban D’Souza, J.A.; Iqbal, M. The potential protective effect of Commelina nudiflora L. against CCl4-induced hepatotoxicity in rats, mediated by suppression of oxidative stress and inflammation. Environ. Health Prev. Med., 2017, 22, 66.
[http://dx.doi.org/10.1186/s12199-017-0673-0] [PMID: 29165163]
[32]
Ferreira, E.A.; Gris, E.F.; Felipe, K.B.; Gomes, J.F.; Cargnin-Ferreira, E.; Pedrosa, R.C. Potent hepatoprotective effect in CCl4-induced hepatic injury in mice of phloroacetophenone Libyan J. Med., 2010, 5
[http://dx.doi.org/10.3402/ljm.v5i0.4891]
[33]
Suzuki, K.; Nakagawa, K.; Yamamoto, T.; Miyazawa, T.; Kimura, F.; Kamei, M.; Miyazawa, T. CCl4-induced hepatic and renal damages in rat: inhibitory effects of cacao polyphenol. Biosci. Biotechnol. Biochem., 2015, 79, 1669-1675.
[http://dx.doi.org/10.1080/09168451.2015.1039481] [PMID: 25996516]
[34]
Yin, L.; Wei, L.; Fu, R.; Ding, L.; Guo, Y.; Tang, L.; Chen, F. Antioxidant and hepatoprotective activity of Veronica ciliata Fisch. extracts against CCl4-induced liver injury in mice. Molecules, 2014, 19, 7223-7236.
[http://dx.doi.org/10.3390/molecules19067223] [PMID: 24892270]
[35]
Ahmed, A.F.; Al-Qahtani, J.H.; Al-Yousef, H.M.; Al-Said, M.S.; Ashour, A.E.; Al-Sohaibani, M.; Rafatullah, S. Proanthocyanidin-rich date seed extract protects against chemically induced hepatorenal toxicity. J. Med. Food, 2015, 18(3), 280-289.
[http://dx.doi.org/10.1089/jmf.2014.3157] [PMID: 25569813]
[36]
Kachadourian, R.; Day, B.J.; Pugazhenti, S.; Franklin, C.C.; Genoux-Bastide, E.; Mahaffey, G.; Gauthier, C.; Di Pietro, A.; Boumendjel, A. A synthetic chalcone as a potent inducer of glutathione biosynthesis. J. Med. Chem., 2012, 55(3), 1382-1388.
[http://dx.doi.org/10.1021/jm2016073] [PMID: 22239485]
[37]
Razavi, S.M.; Seghinsara, A.S.; Abedelahi, A.; Salimnejad, R.; Tayefi, H. Effect of vitamin E and selenium on oxidative stress and tissue damages induced by electromagnetic fields in immature mice ovarian. Crescent J. Med. Biol. Sci., 2017, 4, 120-125.
[38]
Bellassoued, K.; Ben Hsouna, A.; Athmouni, K.; van Pelt, J.; Makni Ayadi, F.; Rebai, T.; Elfeki, A. Protective effects of Mentha piperita L. leaf essential oil against CCl4 induced hepatic oxidative damage and renal failure in rats. Lipids Health Dis., 2018, 17(1), 9.
[http://dx.doi.org/10.1186/s12944-017-0645-9] [PMID: 29316974]
[39]
Mabry, T.J.; Markham, K.R.; Thomas, M.B. The two-dimensional paper chromatographic analysis of flavonoids.In: the systematic identification of flavonoids.,; , 1970.
[http://dx.doi.org/10.1007/978-3-642-88458-0_1]
[40]
Hartwig, V.G.; Brumovsky, L.A.; Fretes, R.M.; Boado, L.B. A novel procedure to measure the antioxidant capacity of yerba maté extracts. Food Sci. Technol. (Campinas), 2012, 32, 126-133.
[http://dx.doi.org/10.1590/S0101-20612012005000022]
[41]
Palafox-Carlos, H.; Gil-Chávez, J.; Sotelo-Mundo, R.R.; Namiesnik, J.; Gorinstein, S.; González-Aguilar, G.A. Antioxidant interactions between major phenolic compounds found in ‘Ataulfo’ mango pulp: chlorogenic, gallic, protocatechuic and vanillic acids. Molecules, 2012, 17(11), 12657-12664.
[http://dx.doi.org/10.3390/molecules171112657] [PMID: 23103532]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy