[1]
Munos, B. Lessons from 60 years of pharmaceutical innovation. Nat. Rev. Drug Discov., 2009, 8(12), 959.
[2]
Warren, J. Drug discovery: Lessons from evolution. Br. J. Clin. Pharmacol., 2011, 71(4), 497-503.
[3]
Hughes, B. 2009 FDA drug approvals. Nat. Rev. Drug Discov., 2010, 9, 89-72.
[4]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436.
[5]
Li, D.; Sajjapongse, K.; Truong, H.; Conant, G.; Becchi, M. In. A
distributed CPU-GPU framework for pairwise alignments on
large-scale sequence datasets, Application-Specific Systems, Architectures
and Processors(ASAP). 2013, IEEE 24th International
Conference on, IEEE: 2013; pp. 329-338.
[6]
Li, D.; Becchi, M. In. Deploying graph algorithms on gpus: An
adaptive solution, Parallel & Distributed Processing(IPDPS), 2013
IEEE 27th International Symposium on, IEEE. 2013, pp. 1013-
1024.
[7]
Li, D.; Chen, X.; Becchi, M.; Zong, Z. In. Evaluating the energy
efficiency of deep convolutional neural networks on cpus and gpus, Big Data and Cloud Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and Communications
(SustainCom) (BDCloud-SocialCom-SustainCom), 2016
IEEE International Conferences on, IEEE. 2016, pp. 477-484.
[8]
Zhang, K.; Gao, C.; Guo, L.; Sun, M.; Yuan, X.; Han, T.X.; Zhao, Z.; Li, B. Age group and gender estimation in the wild with deep RoR architecture. IEEE Access, 2017, 5, 22492-22503.
[9]
Sun, M.; Han, T.X.; Liu, M-C.; Khodayari-Rostamabad, A. In. Multiple instance learning convolutional neural networks for object
recognition, Pattern Recognition(ICPR), 2016 23rd International
Conference on, IEEE. 2016, pp. 3270-3275.
[10]
Trieu, T.; Cheng, J. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data. Nucleic Acids Res., 2014, 42(7), e52-e52.
[11]
Adhikari, B.; Trieu, T.; Cheng, J. Chromosome3D: Reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing. BMC Genomics, 2016, 17(1), 886.
[12]
Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Res., 2016, 44(W1), W406-W409.
[13]
Cheng, J.; Tegge, A.N.; Baldi, P. Machine learning methods for protein structure prediction. IEEE Rev. Biomed. Eng., 2008, 1, 41-49.
[14]
Cao, R.; Adhikari, B.; Bhattacharya, D.; Sun, M.; Hou, J.; Cheng, J. QAcon: Single model quality assessment using protein structural and contact information with machine learning techniques. Bioinformatics, 2017, 33(4), 586-588.
[15]
Cao, R.; Bhattacharya, D.; Hou, J.; Cheng, J.; Deep, Q.A. Improving the estimation of single protein model quality with deep belief networks. BMC Bioinformatics, 2016, 17(1), 495.
[16]
Cao, R.; Wang, Z.; Wang, Y.; Cheng, J. SMOQ: A tool for predicting the absolute residue-specific quality of a single protein model with support vector machines. BMC Bioinformatics, 2014, 15(1), 120.
[17]
Wang, S.; Xu, J. De Novo protein structure prediction by big data and deep learning. Biophys. J., 2017, 112(3), 55a.
[18]
Manavalan, B.; Lee, J. SVMQA: Support-vector-machine-based protein single-model quality assessment. Bioinformatics, 2017, 33(16), 2496-2503.
[19]
Tang, H.; Yang, Y.; Zhang, C.; Chen, R.; Huang, P.; Duan, C.; Zou, P. Predicting presynaptic and postsynaptic neurotoxins by developing feature selection technique. BioMed Res. Int., 2017, 2017, 1-4.
[20]
Chen, X-X.; Tang, H.; Li, W-C.; Wu, H.; Chen, W.; Ding, H.; Lin, H. Identification of bacterial cell wall lyases via pseudo amino acid composition. BioMed Res. Int., 2016, 2016, 1-8.
[21]
Tang, H.; Zou, P.; Zhang, C.; Chen, R.; Chen, W.; Lin, H. Identification of apolipoprotein using feature selection technique. Sci. Rep., 2016, 6, 30441.
[22]
Feng, P-M.; Ding, H.; Chen, W.; Lin, H. Naive Bayes classifier with feature selection to identify phage virion proteins. Comput. Math. Methods Med., 2013, 2013, 530696.
[23]
Tang, H.; Chen, W.; Lin, H. Identification of immunoglobulins using Chou’s pseudo amino acid composition with feature selection technique. Mol. Biosyst., 2016, 12(4), 1269-1275.
[24]
Cao, R.; Freitas, C.; Chan, L.; Sun, M.; Jiang, H.; Chen, Z. ProLanGO: Protein function prediction using neural machine translation based on a recurrent neural network. Molecules, 2017, 22(10), 1732.
[25]
Jiang, Y.; Oron, T.R.; Clark, W.T.; Bankapurm, A.R.; D’Andrea, D.; Lepore, R.; Funk, C.S.; Kahanda, I.; Verspoor, K.M.; Ben-Hur, A. Koo da, C.E.; Penfold-Brown, D.; Shasha, D.; Youngs, N.; Bonneau, R.; Lin, A.; Sahraeian, S.M.; Martelli, P.L.; Profiti, G.; Casadio, R.; Cao, R.; Zhong, Z.; Cheng, J.; Altenhoff, A.; Skunca, N.; Dessimoz, C.; Dogan, T.; Hakala, K.; Kaewphan, S.; Mehryary, F.; Salakoski, T.; Ginter, F.; Fang, H.; Smithers, B.; Oates, M.; Gough, J.; Törönen, P.; Koskinen, P.; Holm, L.; Chen, C.T.; Hsu, W.L.; Bryson, K.; Cozzetto, D.; Minneci, F.; Jones, D.T.; Chapman, S.; Bkc, D.; Khan, I.K.; Kihara, D.; Ofer, D.; Rappoport, N.; Stern, A.; Cibrian-Uhalte, E.; Denny, P.; Foulger, R.E.; Hieta, R.; Legge, D.; Lovering, R.C.; Magrane, M.; Melidoni, A.N.; Mutowo-Meullenet, P.; Pichler, K.; Shypitsyna, A.; Li, B.; Zakeri, P.; ElShal, S.; Tranchevent, L.C.; Das, S.; Dawson, N.L.; Lee, D.; Lees, J.G.; Sillitoe, I.; Bhat, P.; Nepusz, T.; Romero, A.E.; Sasidharan, R.; Yang, H.; Paccanaro, A.; Gillis, J.; Sedeño-Cortés, A.E.; Pavlidis, P.; Feng, S.; Cejuela, J.M.; Goldberg, T.; Hamp, T.; Richter, L.; Salamov, A.; Gabaldon, T.; Marcet-Houben, M.; Supek, F.; Gong, Q.; Ning, W.; Zhou, Y.; Tian, W.; Falda, M.; Fontana, P.; Lavezzo, E.; Toppo, S.; Ferrari, C.; Giollo, M.; Piovesan, D.; Tosatto, S.C.; Del Pozo, A.; Fernández, J.M.; Maietta, P.; Valencia, A.; Tress M.L.; Benso A.; Di Carlo S.; Politano G.; Savino, A.; Rehman, H.U.; Re, M.; Mesiti, M.; Valentini, G.; Bargsten, J.W.; Van Dijk, A.D.; Gemovic, B.; Glisic, S.; Perovic, V.; Veljkovic, V.; Veljkovic, N.; Almeida-E-Silva, D.C.; Vencio, R.Z.; Sharan, M.; Vogel, J.; Kansakar, L.; Zhang, S.; Vucetic, S.; Wang Z.; Sternberg, M.J.; Wass, M.N.; Huntley, R.P.; Martin, M.J.; O’Donovan, C.; Robinson P.N.; Moreau, Y.; Tramontano A.; Babbitt, P.C.; Brenner, S.E.; Linial, M.; Orengo, C.A.; Rost, B.; Greene, C.S.; Mooney, S.D.; Friedberg I.; Radivojac P. An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol., 2016, 17(1), 184.
[26]
Tang, H.; Su, Z-D.; Wei, H-H.; Chen, W.; Lin, H. Prediction of cell-penetrating peptides with feature selection techniques. Biochem. Biophys. Res. Commun., 2016, 477(1), 150-154.
[27]
Kulmanov, M.; Khan, M.A.; Hoehndorf, R.; Deep, G.O. Predicting protein functions from sequence and interactions using a deep ontology-aware classifier. Bioinformatics, 2017, 34(4), 660-668.
[28]
Cao, R.; Cheng, J. Integrated protein function prediction by mining function associations, sequences, and protein-protein and gene-gene interaction networks. Methods, 2016, 93, 84-91.
[29]
Ekins, S.; Madrid, P.B.; Sarker, M.; Li, S-G.; Mittal, N.; Kumar, P.; Wang, X.; Stratton, T.P.; Zimmerman, M.; Talcott, C. Combining metabolite-based pharmacophores with bayesian machine learning models for Mycobacterium tuberculosis drug discovery. PLoS One, 2015, 10(10), e0141076.
[30]
Lavecchia, A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today, 2015, 20(3), 318-331.
[31]
Ekins, S.; Freundlich, J.S.; Reynolds, R.C. Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for mycobacterium tuberculosis. J. Chem. Inf. Model., 2014, 54(7), 2157-2165.
[32]
Ekins, S.; Freundlich, J.S.; Clark, A.M.; Anantpadma, M.; Davey, R.A.; Madrid, P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000 Res., 2015, 4, 1091.
[33]
Warmuth, M.K.; Liao, J.; Rätsch, G.; Mathieson, M.; Putta, S.; Lemmen, C. Active learning with support vector machines in the drug discovery process. J. Chem. Inf. Comput. Sci., 2003, 43(2), 667-673.
[34]
Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1882-1889.
[35]
Liu, Y. A comparative study on feature selection methods for drug discovery. J. Chem. Inf. Comput. Sci., 2004, 44(5), 1823-1828.
[36]
Niehaus, K.E.; Walker, T.M.; Crook, D.W.; Peto, T.E.; Clifton, D.A. In. Machine learning for the prediction of antibacterial susceptibility
in Mycobacterium tuberculosis, Biomedical and Health
Informatics (BHI), 2014 IEEE-EMBS International Conference on,
IEEE: 2014; pp. 618-621.
[37]
Menden, M.P.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One, 2013, 8(4), e61318.
[38]
Durrant, J.D.; Amaro, R.E. Machine‐learning techniques applied to antibacterial drug discovery. Chem. Biol. Drug Des., 2015, 85(1), 14-21.
[39]
Gawehn, E.; Hiss, J.A.; Schneider, G. Deep learning in drug discovery. Mol. Inform., 2016, 35(1), 3-14.
[40]
Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model., 2013, 53(7), 1563-1575.
[41]
Korkmaz, S.; Zararsiz, G.; Goksuluk, D. Mlvis: A web tool for machine learning-based virtual screening in early-phase of drug discovery and development. PLoS One, 2015, 10(4), e0124600.
[42]
Hughes, T.B.; Miller, G.P.; Swamidass, S.J. Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Cent. Sci., 2015, 1(4), 168-180.
[43]
Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm., 2016, 13(7), 2524-2530.
[44]
Naik, A.W.; Kangas, J.D.; Sullivan, D.P.; Murphy, R.F. Active machine learning-driven experimentation to determine compound effects on protein patterns. eLife, 2016, 5, e10047.
[45]
Ding, H.; Takigawa, I.; Mamitsuka, H.; Zhu, S. Similarity-based machine learning methods for predicting drug-target interactions: A brief review. Brief. Bioinform., 2013, 15(5), 734-747.
[46]
Giguere, S.; Laviolette, F.; Marchand, M.; Tremblay, D.; Moineau, S.; Liang, X.; Biron, É.; Corbeil, J. Machine learning assisted design of highly active peptides for drug discovery. PLOS Comput. Biol., 2015, 11(4), e1004074.
[47]
Murphy, R.F. An active role for machine learning in drug development. Nat. Chem. Biol., 2011, 7(6), 327.
[48]
Costello, J.C.; Heiser, L.M.; Georgii, E.; Gönen, M.; Menden, M.P.; Wang, N.J.; Bansal, M.; Hintsanen, P.; Khan, S.A.; Mpindi, J.P.; Kallioniemi, O. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol., 2014, 32(12), 1202.
[49]
Lin, H.; Liang, Z-Y.; Tang, H.; Chen, W. Identifying sigma70 promoters with novel pseudo nucleotide composition. IEEE/ACM Trans. Comput. Biol. Bioinform., 2017. doi: 10.1109/TCBB.2017.
2666141. [Epub ahead of print].
[50]
Chen, W.; Yang, H.; Feng, P.; Ding, H.; Lin, H. iDNA4mC: Identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics, 2017, 33(22), 3518-3523.
[51]
Chen, W.; Tang, H.; Lin, H. MethyRNA: A web server for identification of N6-methyladenosine sites. J. Biomol. Struct. Dyn., 2017, 35(3), 683-687.
[52]
Liang, Z-Y.; Lai, H-Y.; Yang, H.; Zhang, C-J.; Yang, H.; Wei, H-H.; Chen, X-X.; Zhao, Y-W.; Su, Z-D.; Li, W-C. Pro54DB: A database for experimentally verified sigma-54 promoters. Bioinformatics, 2017, 33(3), 467-469.
[53]
Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K-C. iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[54]
Yang, H.; Tang, H.; Chen, X-X.; Zhang, C-J.; Zhu, P-P.; Ding, H.; Chen, W.; Lin, H. Identification of secretory proteins in mycobacterium tuberculosis using pseudo amino acid composition. BioMed Res. Int., 2016, 2016, 5413903.
[55]
Tang, H.; Zhang, C.; Chen, R.; Huang, P.; Duan, C.; Zou, P. Identification of secretory proteins of malaria parasite by feature selection technique. Lett. Org. Chem., 2017, 14(9), 621-624.
[56]
Feng, P-M.; Lin, H.; Chen, W. Identification of antioxidants from sequence information using Naive Bayes. Comput. Math. Methods Med., 2013, 2013, 567529.
[57]
Zhao, Y-W.; Lai, H-Y.; Tang, H.; Chen, W.; Lin, H. Prediction of phosphothreonine sites in human proteins by fusing different features. Sci. Rep., 2016, 6, 34817.
[58]
Tang, H.; Cao, R-Z.; Wang, W.; Liu, T-S.; Wang, L-M.; He, C-M. A two-step discriminated method to identify thermophilic proteins. Int. J. Biomath., 2017, 10(04), 1750050.
[59]
Lai, H-Y.; Chen, X-X.; Chen, W.; Tang, H.; Lin, H. Sequence-based predictive modeling to identify cancerlectins. Oncotarget, 2017, 8(17), 28169.