[1]
Chung, W.Y.; Kim, T.H.; Hong, Y.H.; Lee, D.D. Characterization of porous tin oxide thin films and their application to microsensor fabrication. Sens. Actuator B, 1995, 25, 482-485.
[2]
Faglia, G.; Comini, E.; Cristalli, A.; Sberveglieri, G.; Dori, L. Very low power consumption micromachined CO sensors. Sens. Actuator B, 1999, 55, 140-146.
[3]
Demarne, V.; Grisel, A. An integrated low-power thin-film CO gas sensor on silicon. Sens. Actuators, 1988, 13, 301-313.
[4]
Semancik, S.; Cavicchi, R.E.; Kreider, K.G.; Suehle, J.S.; Chaparala, P. Selected-area deposition of multiple active films for conductometric microsensor arrays. Sens. Actuator B, 1996, 34, 209-212.
[5]
Fang, G.; Liu, Z.; Zhang, Z.; Yao, K.L. Preparation of ZrO2‐SnO2 thin films by the sol‐gel technique and their gas sensitivity. Phys. Status Solidi, A., 1996, 156, 81-85.
[6]
Rao, G.T.; Rao, D.T. Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sens. Actuator B, 1999, 55, 166-169.
[7]
Solis, J.L.; Saukko, S.; Kish, L.; Granqvist, C.G.; Lantto, V. Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films, 2001, 391, 255-260.
[8]
Kimura, Y.; Itoh, K.; Yamaguchi, R.T.; Ishibashi, K.I.; Itaya, K.; Niwano, M. Room temperature observation of a Coulomb blockade phenomenon in aluminum nanodots fabricated by an electrochemical process. Appl. Phys. Lett., 2007, 90, 093119.
[9]
Li, F.; Zhu, M.; Liu, C.; Zhou, W.L.; Wiley, J.B. Patterned metal nanowire arrays from photolithographically-modified templates. J. Am. Chem. Soc., 2006, 128, 13342-13343.
[10]
Macák, J.M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed., 2005, 44, 2100-2102.
[11]
Ishibashi, K.I.; Yamaguchi, R.T.; Kimura, Y.; Niwano, M. Fabrication of titanium oxide nanotubes by rapid and homogeneous anodization in perchloric acid/ethanol mixture. J. Electrochem. Soc., 2008, 155, K10-K14.
[12]
Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A.; Ong, K.G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology, 2006, 17, 398-402.
[13]
Tsuchiya, H.; Schmuki, P. Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochem. Commun., 2005, 7, 49-52.
[14]
Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P. Formation of self-organized niobium porous oxide on niobium. Electrochem. Commun., 2005, 7, 97-100.
[15]
Sieber, I.V.; Schmuki, P. Porous tantalum oxide prepared by electrochemical anodic oxidation. J. Electrochem. Soc., 2005, 152, C639-C644.
[16]
Mukherjee, N.; Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A. Fabrication of nanoporous tungsten oxide by galvanostatic anodization. J. Mater. Res., 2003, 18, 2296-2299.
[17]
Stefanovich, G.B.; Pergament, A.L.; Velichko, A.A.; Stefanovich, L.A. Anodic oxidation of vanadium and properties of vanadium oxide films. J. Phys. Condens. Matter, 2004, 16, 4013-4024.
[18]
Tsuchiya, H.; Macak, J.M.; Sieber, I.; Schmuki, P. Self‐organized high‐aspect‐ratio nanoporous zirconium oxides prepared by electrochemical anodization. Small, 2005, 1, 722-725.
[19]
Yaeger, E. Comprehensive Treatise of Electrochemistry; Conway, B.E., Ed.; Plenum Press: New York, 1983, Vol. 7, pp. 301-398.
[20]
Cabrera, N.F.M.N.; Mott, N.F. Theory of the oxidation of metals. Rep. Prog. Phys., 1949, 12, 163-184.
[21]
Buff, H. Ueber das electrische Verhalten des aluminiums. Justus Liebigs Ann. Chem., 1857, 102, 265-284.
[22]
Keller, F.; Hunter, M.S.; Robinson, D.L. Structural features of oxide coatings on aluminum. J. Electrochem. Soc., 1953, 100, 411-419.
[23]
Skeldon, P.; Shimizu, K.; Thompson, G.E.; Wood, G.C. Fundamental studies elucidating anodic barrier-type film growth on aluminium. Thin Solid Films, 1985, 123, 127-133.
[24]
Sulka, G.D. Highly Ordered Anodic Porous Alumina Formation by
Self-Organized Anodizing,, 2008. Nanostructured Materials in
Electrochemistry; Wiley-VCH Verlag GmbH & Co. KGaA;
Weinheim, Germany, 2008, pp. 1-116.
[25]
Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett., 1997, 71, 2770-2772.
[26]
Jessensky, O.; Müller, F.; Gösele, U. Self‐organized formation of hexagonal pore structures in anodic alumina. J. Electrochem. Soc., 1998, 145, 3735-3740.
[27]
Belwalkar, A.; Grasing, E.; Van Geertruyden, W.; Huang, Z.; Misiolek, W.Z. Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Membr. Sci., 2008, 319, 192-198.
[28]
Sulka, G.D.; Stroobants, S.; Moshchalkov, V.V.; Borghs, G.; Celis, J.P. Effect of tensile stress on growth of self-organized nanostructures on anodized aluminum. J. Electrochem. Soc., 2004, 151, B260-B264.
[29]
Masuda, H.; Yasui, K.; Sakamoto, Y.; Nakao, M.; Tamamura, T.; Nishio, K. Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated Al on Si. Jpn. J. Appl. Phys., 2001, 40, L1267-L1269.
[30]
Kikuchi, T.; Yamamoto, T.; Natsui, S.; Suzuki, R.O. Fabrication of anodic porous alumina by squaric acid anodizing. Electrochim. Acta, 2014, 123, 14-22.
[31]
Vico, J.M.; Jansen, F.; Maex, K.; Groeseneken, G.; Vereecken, P.M. Formation of porous alumina patterns on silicon. ECS Trans., 2007, 3, 85-93.
[32]
Fratila-Apachitei, L.E.; Tichelaar, F.D.; Thompson, G.E.; Terryn, H.; Skeldon, P.; Duszczyk, J.; Katgerman, L. A transmission electron microscopy study of hard anodic oxide layers on AlSi (Cu) alloys. Electrochim. Acta, 2004, 49, 3169-3177.
[33]
Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater., 2006, 5, 741-747.
[34]
Molchan, I.S.; Molchan, T.V.; Gaponenko, N.V.; Skeldon, P.; Thompson, G.E. Impurity-driven defect generation in porous anodic alumina. Electrochem. Commun., 2010, 12, 693-696.
[35]
Losic, D.; Losic, Jr, D. Preparation of porous anodic alumina with periodically perforated pores. Langmuir, 2009, 25, 5426-5431.
[36]
Biswajit, D. Investigation of nanoporous thin-film alumina templates. J. Electrochem. Soc., 2004, 151, D46-D50.
[37]
Li, F.; Zhang, L.; Metzger, R.M. On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater., 1998, 10, 2470-2480.
[38]
Fratila-Apachitei, L.E.; Terryn, H.; Skeldon, P.; Thompson, G.E.; Duszczyk, J.; Katgerman, L. Influence of substrate microstructure on the growth of anodic oxide layers. Electrochim. Acta, 2004, 49, 1127-1140.
[39]
Tsangaraki-Kaplanoglou, I.; Theohari, S.; Dimogerontakis, T.; Wang, Y.M.; Kuo, H.H.H.; Kia, S. Effect of alloy types on the anodizing process of aluminum. Surf. Coat. Technol., 2006, 200, 2634-2641.
[40]
Li, D.; Zhao, L.; Jiang, C.; Lu, J.G. Formation of anodic aluminum oxide with serrated nanochannels. Nano Lett., 2010, 10, 2766-2771.
[41]
Zhou, F.Y.; Al-Zenati, A.M.; Baron-Wiecheć, A.; Curioni, M.; Garcia-Vergara, S.J.; Habazaki, H.; Skeldon, P.; Thompson, G.E. Volume expansion factor and growth efficiency of anodic alumina formed in sulphuric acid. J. Electrochem. Soc., 2011, 158, C202-C214.
[42]
Vrublevsky, I.; Parkoun, V.; Sokol, V.; Schreckenbach, J.; Marx, G. The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime. Appl. Surf. Sci., 2004, 222, 215-225.
[43]
Abd-Elnaiem, A.M.; Mebed, A.M.; Gaber, A.; Abdel-Rahim, M.A. Effect of the anodization parameters on the volume expansion of anodized aluminum films. Int. J. Electrochem. Sci., 2013, 8, 10515-10525.
[44]
Kao, T.T.; Chang, Y.C. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids. Appl. Surf. Sci., 2014, 288, 654-659.
[45]
Stępniowski, W.J.; Bojar, Z. Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features. Surf. Coat. Technol., 2011, 206, 265-272.
[46]
Chung, C.K.; Liao, M.W.; Chang, H.C.; Lee, C.T. Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization. Thin Solid Films, 2011, 520, 1554-1558.
[47]
Abd-Elnaiem, A.M.; Gaber, A. Parametric study on the anodization of pure aluminum thin film used in fabricating nano-pores template. Int. J. Electrochem. Sci., 2013, 8, 9741-9751.
[48]
Banerjee, S.; Myung, Y.; Banerjee, P. Confined anodic aluminum oxide nanopores on aluminum wires. RSC Adv., 2014, 4, 7919-7926.
[49]
Furneaux, R.C.; Thompson, G.E.; Wood, G.C. The application of ultramicrotomy to the electronoptical examination of surface films on aluminium. Corros. Sci., 1978, 18, 853-881.
[50]
Long, J.; Borissova, A.; Wilson, A.D.; Wilson, J.C.A.B. Sample preparation of anodised aluminium oxide coatings for scanning electron microscopy. Micron, 2017, 101, 87-94.
[51]
Diggle, J.W.; Downie, T.C.; Goulding, C.W. Anodic oxide films on aluminum. Chem. Rev., 1969, 69, 365-405.
[52]
O’sullivan, J.P.; Wood, G.C. In: The Morphology and Mechanism
of Formation of Porous Anodic Films on Aluminium,, Proceedings
of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 1970, pp. 511-543.
[53]
Wood, G.C.; Skeldon, P.; Thompson, G.E.; Shimizu, K. A model for the incorporation of electrolyte species into anodic alumina. J. Electrochem. Soc., 1996, 143, 74-83.
[54]
Hoar, T.P.; Mott, N.F. A mechanism for the formation of porous anodic oxide films on aluminium. J. Phys. Chem. Solids, 1959, 9, 97-99.
[55]
Patermarakis, G. Transformation of the overall strict kinetic model governing the growth of porous anodic Al2O3 films on aluminium to a form applicable to the non-stirred. Electrochim. Acta, 1996, 41, 2601-2611.
[56]
Cheng, C.; Ngan, A.H.W. Modelling and simulation of self-ordering in anodic porous alumina. Electrochim. Acta, 2011, 56, 9998-10008.
[57]
Güntherschulze, A.; Betz, H. Die Bewegung der Ionengitter von Isolatoren bei extremen elektrischen Feldstärken. Z. Phys., 1934, 92, 367-374.
[58]
Li, Y.; Shimada, H.; Sakairi, M.; Shigyo, K.; Takahashi, H.; Seo, M. Formation and breakdown of anodic oxide films on aluminum in boric acid/borate solutions. J. Electrochem. Soc., 1997, 144, 866-876.
[59]
Fromhold, A.T. Theory of Metal Oxidation; North Holland Pub. Co.: Amsterdam,and New York, 1976.
[60]
Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268, 1466-1468.
[61]
Zhou, J.H.; He, J.P.; Zhao, G.W.; Zhang, C.X.; Zhao, J.S.; Hu, H.P. Alumina nanostructures prepared by two-step anodization process. Trans. Nonferrous Met. Soc. China, 2007, 17, 82-86.
[62]
Mohajeri, M.; Akbarpour, H.; Karimkhani, V. Synthesis of highly ordered carbon nanotubes/nanoporous anodic alumina composite membrane and potential application in heavy metal ions removal from industrial wastewater. Mater. Today Proc, 2017, 4, 4906-4911.
[63]
Henzie, J.; Kwak, E.S.; Odom, T.W. Mesoscale metallic pyramids with nanoscale tips. Nano Lett., 2005, 5, 1199-1202.
[64]
Asoh, H.; Nishio, K.; Nakao, M.; Tamamura, T.; Masuda, H. Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J. Electrochem. Soc., 2001, 148, B152-B156.
[65]
Yasui, K.; Nishio, K.; Nunokawa, H.; Masuda, H. Ideally ordered anodic porous alumina with Sub-50 nm hole intervals based on imprinting using metal molds. J. Vac. Sci. Technol. B, 2005, 23, L9-L12.
[66]
Jani, A.M.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci., 2013, 58, 636-704.
[67]
Ji, R. Templated Fabrication of Periodic Nanostructures Based on Laser Interference Lithography PhD Thesis, Universität Halle: Wittenberg, June 12,., 2008.
[68]
Mikulskas, I.; Juodkazis, S.; Tomasiunas, R.; Dumas, J.G. Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater., 2001, 13, 1574-1574.
[69]
Choi, J.; Luo, Y.; Wehrspohn, R.B.; Hillebrand, R.; Schilling, J.; Gösele, U. Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys., 2003, 94, 4757-4762.
[70]
Sun, Z.; Kim, H.K. Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films. Appl. Phys. Lett., 2002, 81, 3458-3460.
[71]
Li, Y.; Zheng, M.; Ma, L.; Shen, W. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology, 2006, 17, 5101-5105.
[72]
Lee, W.; Ji, R.; Ross, C.A.; Gösele, U.; Nielsch, K. Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography. Small, 2006, 2, 978-982.
[73]
Nagel, D.J. Technologies for Micrometer and Nanometer Pattern and Material Transfer. Direct Write Technologies for Rapid Prototyping Applications; Academic: New York, 2002, pp. 557-701.
[74]
Lee, W.; Kim, J.C.; Gösele, U. Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv. Funct. Mater., 2010, 20, 21-27.
[75]
Kim, B.; Youn, Y.; Park, Y.S.; Moon, D.N.; Kang, K.; Han, S.; Lee, J.S. Impurity-driven formation of branched pores in porous anodic alumina. Scripta . Mater., 2016, 122, 102-105.
[76]
Abd-Elnaiem, A.M.; Mebed, A.M.; Wojciech, J.S.; Czujko, T. Characterization of arrangement and geometry of porous anodic alumina formed by one-step anodization of Al-1wt% Si thin films. Surf. Coat. Technol., 2016, 307, 359-365.
[77]
Abd-Elnaiem, A.M.; Mebed, A.M.; Gaber, A.; Abdel-Rahim, M.A. Tailoring the porous nanostructure of porous anodic alumina membrane with the impurity control. J. Alloys Compd., 2016, 659, 270-278.
[78]
Vanpaemel, J.; Abd-Elnaiem, A.M.; De Gendt, S.; Vereecken, P.M. The formation mechanism of 3D porous anodized aluminum oxide templates from an aluminum film with copper impurities. J. Phys. Chem. C, 2015, 119, 2105-2112.
[79]
Wang, W.; Tian, M.; Abdulagatov, A.; George, S.M.; Lee, Y.C.; Yang, R. Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. Nano Lett., 2012, 12, 655-660.
[80]
Young, L. Anodic Oxide Films London, New York Academic Press., 1961.
[81]
Karim, F.; Bora, T.; Chaudhari, M.; Habib, K.; Mohammed, W.; Dutta, J. Measurement of aluminum oxide film by Fabry–Perot interferometry and scanning electron microscopy. J. Saudi Chem. Soc., 2016, 21, 938-942.
[82]
Simond, O.; Schaller, V.; Comninellis, C. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim. Acta, 1997, 42, 2009-2012.
[83]
Gong, D.; Grimes, C.A.; Varghese, O.K.; Hu, W.; Singh, R.S.; Chen, Z.; Dickey, E.C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res., 2001, 16, 3331-3334.
[84]
Su, Z.; Zhou, W. Formation mechanism of porous anodic aluminium and titanium oxides. Adv. Mater., 2008, 20, 3663-3667.
[85]
Amsel, G.; Samuel, D. The mechanism of anodic oxidation. J. Phys. Chem. Solids, 1962, 23, 1707-1718.
[86]
Mishra, P.; Hebert, K.R. Flow instability mechanism for formation of self-ordered porous anodic oxide films. Electrochim. Acta, 2016, 222, 1186-1190.
[87]
Tajima, S.; Baba, N.; Shimizu, K.; Mizuki, I. Photoluminescence of anodic oxide films on aluminium. Active Passive Electron. Comp., 1976, 3, 91-95.
[88]
Chu, S.Z.; Wada, K.; Inoue, S.; Isogai, M.; Katsuta, Y.; Yasumori, A. Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization. J. Electrochem. Soc., 2006, 153, B384-B391.
[89]
Gorokh, G.G.; Pashechko, M.I.; Borc, J.T.; Lozovenko, A.A.; Kashko, I.A.; Latos, A.I. Matrix coatings based on anodic alumina with carbon nanostructures in the pores. Appl. Surf. Sci., 2018, 433, 829-835.
[90]
Cui, X.; Zhao, Q.; Li, Z.; Sun, Z.; Jiang, Z. Cyclic voltammetry as a tool to estimate the effective pore density of an anodic aluminium oxide template. Nanotechnology, 2007, 18, 5701-5705.
[91]
Li, A.P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., 1998, 84, 6023-6026.
[92]
Zaraska, L.; Jaskuła, M.; Sulka, G.D. Porous anodic alumina layers with modulated pore diameters formed by sequential anodizing in different electrolytes. Mater. Lett., 2016, 171, 315-318.
[93]
Bai, A.; Hu, C.C.; Yang, Y.F.; Lin, C.C. Pore diameter control of anodic aluminum oxide with ordered array of nanopores. Electrochim. Acta, 2008, 53, 2258-2264.
[94]
Kashi, M.A.; Ramazani, A. The effect of temperature and concentration on the self-organized pore formation in anodic alumina. J. Phys. D Appl. Phys., 2005, 38, 2396-2399.
[95]
Sulka, G.D.; Stępniowski, W.J. Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta, 2009, 54, 3683-3691.
[96]
Mebed, A.M.; Abd-Elnaiem, A.M.; Najm, M.A. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates. Appl. Phys., A., 2016, 122, 565.
[97]
Abd-Elnaiem, A.M.; Asafa, T.B.; Trivinho-Strixino, F.; Delgado-Silva, A.D.O.; Callewaert, M.; De Malsche, W. Optical reflectance from anodized Al-0.5 wt% Cu thin films: Porosity and refractive index calculations. J. Alloys Compd., 2017, 721, 741-749.
[98]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Bojar, Z. Ultra-small nanopores obtained by self-organized anodization of aluminum in oxalic acid at low voltages. Mater. Lett., 2013, 111, 20-23.
[99]
Martin, J.; Manzano, C.V.; Caballero-Calero, O.; Martin-Gonzalez, M. High-aspect-ratio and highly ordered 15-nm porous alumina templates. ACS Appl. Mater. Interfaces, 2013, 5, 72-79.
[100]
Nishinaga, O.; Kikuchi, T.; Natsui, S.; Suzuki, R.O. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing. Sci. Rep., 2013, 3, 2748-2748.
[101]
Manzano, C.V.; Martín, J.; Martín-González, M.S. Ultra-narrow 12 nm porediameter self-ordered anodic alumina templates. Microporous Mesoporous Mater., 2014, 184, 177-183.
[102]
Abd-Elnaiem, A.M.; Mebed, A.M.; El-Said, W.A.; Abdel-Rahim, M.A. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage. Thin Solid Films, 2014, 570, 49-56.
[103]
Norek, M.; Dopierała, M.; Stępniowski, W.J. Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina. J. Electroanal. Chem., 2015, 750, 79-88.
[104]
Masuda, H.; Yada, K.; Osaka, A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys., 1998, 37, L1340-L1342.
[105]
Roslyakov, I.V.; Gordeeva, E.O.; Napolskii, K.S. Role of electrode reaction kinetics in self-ordering of porous anodic alumina. Electrochim. Acta, 2017, 241, 362-369.
[106]
Zhao, N.Q.; Jiang, X.X.; Shi, C.S.; Li, J.J.; Zhao, Z.G.; Du, X.W. Effects of anodizing conditions on anodic alumina structure. J. Mater. Sci., 2007, 42, 3878-3882.
[107]
Ono, S.; Saito, M.; Ishiguro, M.; Asoh, H. Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc., 2004, 151, B473-B478.
[108]
Friedman, A.L.; Brittain, D.; Menon, L. Roles of pH and acid type in the anodic growth of porous alumina. J. Chem. Phys., 2007, 127, 154717-154717.
[109]
Xu, C.; Gao, W. Pilling-Bedworth ratio for oxidation of alloys. Mater. Res. Innov., 2000, 3, 231-235.
[110]
Valeev, R.G.; Stashkova, V.V.; Chukavin, A.I.; Volkov, V.A.; Alalykin, A.S.; Syugaev, A.V.; Beltiukov, A.N.; Gil’mutdinov, F.Z.; Kriventsov, V.V.; Mezentsev, N.A. Ni nanostructures in porous anodic alumina matrices: Structure and cathodic properties in hydrogen release reactions. Phys. Procedia, 2016, 84, 407-414.
[111]
Ide, S.; Capraz, Ö.Ö.; Shrotriya, P.; Hebert, K.R. Oxide microstructural changes accompanying pore formation during anodic oxidation of aluminum. Electrochim. Acta, 2017, 232, 303-309.
[112]
Patermarakis, G.; Moussoutzanis, K. Transformation of porous structure of anodic alumina films formed during galvanostatic anodising of aluminium. J. Electroanal. Chem., 2011, 659, 176-190.
[113]
Ateş, S.; Baran, E. The nanoporous anodic alumina oxide formed by two-step anodization. Thin Solid Films, 2018, 648, 94-102.
[114]
Thompson, G.E.; Wood, G.C. 5-Anodic films on aluminum. Treatise Mater. Sci. Technol., 1983, 23, 205-329.
[115]
Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gösele, U. Self-ordering regimes of porous alumina: The 10 porosity rule. Nano Lett., 2002, 2, 677-680.
[116]
Kim, K.T.; Sim, J.; Cho, S.M. Hydrogen gas sensor using Pd nanowires electro-deposited into anodized alumina template. IEEE Sens. J., 2006, 6, 509-513.
[117]
Lu, C.; Chen, Z. High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide. Sens. Actuators B., 2009, 140, 109-115.
[118]
Artzi-Gerlitz, R.; Benkstein, K.D.; Lahr, D.L.; Hertz, J.L.; Montgomery, C.B.; Bonevich, J.E.; Semancik, S.; Tarlov, M.J. Fabrication and gas sensing performance of parallel assemblies of metal oxide nanotubes supported by porous aluminum oxide membranes. Sens. Actuators B., 2009, 136, 257-264.
[119]
Ding, D.; Chen, Z.; Rajaputra, S.; Singh, V. Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode. Sens. Actuators B., 2007, 124, 12-17.
[120]
Ding, D.; Chen, Z.; Lu, C. Hydrogen sensing of nanoporous palladium films supported by anodic aluminum oxides. Sens. Actuators B., 2006, 120, 182-186.
[121]
Han, N.; Deng, P.; Chen, J.; Chai, L.; Gao, H.; Chen, Y. Electrophoretic deposition of metal oxide films aimed for gas sensors application: The role of anodic aluminum oxide (AAO)/Al composite structure. Sens. Actuators B., 2010, 144, 267-273.
[122]
Rumiche, F.; Wang, H.H.; Hu, W.S.; Indacochea, J.E.; Wang, M.L. Anodized aluminum oxide (AAO) nanowell sensors for hydrogen detection. Sens. Actuators B., 2008, 134, 869-877.
[123]
Thompson, G.E.; Furneaux, R.C.; Wood, G.C.; Richardson, J.A.; Goode, J.S. Nucleation and growth of porous anodic films on aluminium. Nature, 1978, 272, 433-435.
[124]
Ono, S.; Ichinose, H.; Masuko, N. The high resolution observation of porous anodic films formed on aluminum in phosphoric acid solution. Corros. Sci., 1992, 33, 841-850.
[125]
El-Said, W.A.; Yea, C.H.; Jung, M.; Kim, H.; Choi, J.W. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography. Ultramicroscopy, 2010, 110, 676-681.
[126]
Kafi, M.A.; El-Said, W.A.; Kim, T.H.; Choi, J.W. Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays. Biomaterials, 2012, 33, 731-739.
[127]
Jung, M.; El-Said, W.A.; Choi, J.W. Fabrication of gold nanodot arrays on a transparent substrate as a nanobioplatform for label-free visualization of living cells. Nanotechnology, 2011, 22, 235304-235304.
[128]
El-Said, W.A.; Kim, T.H.; Kim, H.; Choi, J.W. Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering. PLoS One, 2011, 6, e15836-e15836.
[129]
Grimes, C.A. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem., 2007, 17, 1451-1457.
[130]
Shimizu, Y.; Kuwano, N.; Hyodo, T.; Egashira, M. High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd. Sens. Actuators B., 2002, 83, 195-201.
[131]
Mor, G.K.; Varghese, O.K.; Paulose, M.; Grimes, C.A. A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor. Sensor . Lett., 2003, 1, 42-46.
[132]
Varghese, O.K.; Gong, D.; Paulose, M.; Ong, K.G.; Grimes, C.A. Hydrogen sensing using titania nanotubes. Sens. Actuators B., 2003, 93, 338-344.
[133]
Varghese, O.K.; Mor, G.K.; Paulose, M.; Grimes, C.A. A Titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol., 2004, 4, 733-737.
[134]
Varghese, O.K.; Yang, X.; Kendig, J.; Paulose, M.; Zeng, K.; Palmer, C.; Ong, K.G.; Grimes, C.A. A transcutaneous hydrogen sensor: From design to application. Sensor . Lett., 2006, 4, 120-128.
[135]
Joo, S.; Muto, I.; Hara, N. Hydrogen gas sensor using Pt- and Pd-added anodic TiO2 nanotube films. J. Electrochem. Soc., 2010, 157, J221-J226.
[136]
Moon, J.; Kemell, M.; Kukkola, J.; Punkkinen, R.; Hedman, H.P.; Suominen, A.; Mäkilä, E.; Tenho, M.; Tuominen, A.; Kim, H. Gas sensor using anodic TiO2 thin film for monitoring hydrogen. Procedia Eng., 2012, 47, 791-794.
[137]
Lin, H.W.; Chang, Y.H.; Chen, C. Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method. J. Electrochem. Soc., 2011, 159, K5-K9.
[138]
Yang, H.Y.; Cheng, X.L.; Zhang, X.F.; Zheng, Z.K.; Tang, X.F.; Xu, Y.M.; Gao, S.; Zhao, H.; Huo, L.H. A novel sensor for fast detection of triethylamine based on rutile TiO2 nanorod arrays. Sens. Actuators B., 2014, 205, 322-328.
[139]
Kimura, Y.; Kimura, S.; Kojima, R.; Bitoh, M.; Abe, M.; Niwano, M. Micro-scaled hydrogen gas sensors with patterned anodic titanium oxide nanotube film. Sens. Actuators B., 2013, 177, 1156-1160.
[140]
Kawasaki, H.; Namba, J.; Iwatsuji, K.; Suda, Y.; Wada, K.; Ebihara, K.; Ohshima, T. NOx gas sensing properties of tungsten oxide thin films synthesized by pulsed laser deposition method. Appl. Surf. Sci., 2002, 197, 547-551.
[141]
Boulmani, R.; Bendahan, M.; Lambert-Mauriat, C.; Gillet, M.; Aguir, K. Correlation between rf-sputtering parameters and WO3 sensor response towards ozone. Sens. Actuators B., 2007, 125, 622-627.
[142]
Stankova, M.; Vilanova, X.; Llobet, E.; Calderer, J.; Bittencourt, C.; Pireaux, J.J.; Correig, X. Influence of the annealing and operating temperatures on the gas sensing properties of rf sputtered WO3 thin-film sensors. Sens. Actuators B., 2005, 105, 271-277.
[143]
Badilescu, S.; Ashrit, P.V. Study of sol-gel prepared nanostructured WO3 thin films and composites for electrochromic applications. Solid State Ion., 2003, 158, 187-197.
[144]
Ozkan, E.; Lee, S.H.; Liu, P.; Tracy, C.E.; Tepehan, F.Z.; Pitts, J.R.; Deb, S.K. Electrochromic and optical properties of
mesoporous tungsten oxide films. Solid State lonics,, 2002, 149, 139-146.
[145]
Aliev, A.E.; Shin, H.W. Nanostructured materials for electrochromic devices. Solid State Ionics., 2002, 154, 425-431.
[146]
Antonaia, A.; Addonizio, M.L.; Minarini, C.; Polichetti, T.; Vittori-Antisari, M. Improvement in electrochromic response for an amorphous/crystalline WO3 double layer. Electrochim. Acta, 2001, 46, 2221-2227.
[147]
Granqvist, C.G. Electrochromic tungsten oxide films: Review of progress 1993-1998. Sol. Energy Mater. Sol. Cells, 2000, 60, 201-262.
[148]
Lee, K.H.; Fang, Y.K.; Lee, W.J.; Ho, J.J.; Chen, K.H.; Liao, K.C. Novel electrochromic devices (ECD) of tungsten oxide (WO3) thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor. Sens. Actuators B., 2000, 69, 96-99.
[149]
Sun, M.; Xu, N.; Cao, Y.W.; Yao, J.N.; Wang, E.G. Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior. J. Mater. Res., 2000, 15, 927-933.
[150]
Tsuchiya, H.; Macak, J.M.; Sieber, I.; Taveira, L.; Ghicov, A.; Sirotna, K.; Schmuki, P. Self-organized porous WO3 formed in NaF electrolytes. Electrochem. Commun., 2005, 7, 295-298.
[151]
Berger, S.; Tsuchiya, H.; Ghicov, A.; Schmuki, P. High photocurrent conversion efficiency in self-organized porous WO3. Appl. Phys. Lett., 2006, 88, 203119.
[152]
De Tacconi, N.R.; Chenthamarakshan, C.R.; Yogeeswaran, G.; Watcharenwong, A.; De Zoysa, R.S.; Basit, N.A.; Rajeshwar, K. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates, influence of process variables on morphology and photoelectrochemical response. J. Phys. Chem. B, 2006, 110, 25347-25355.
[153]
Zhao, J.; Wang, X.; Xu, R.; Mi, Y.; Li, Y. Preparation and growth mechanism of niobium oxide microcones by the anodization method. Electrochem. Solid-State Lett., 2007, 10, C31-C33.
[154]
Xiao, Z.; Zhang, L.; Tian, X.; Fang, X. Synthesis and characterization of tungsten oxide nanorods. J. Mater. Res., 2004, 19, 3665-3670.
[155]
Xiao, Z.; Zhang, L.; Tian, X.; Fang, X. Nanostructured WO3 deposited by modified thermal evaporation for gas-sensing applications. Thin Solid Films, 2005, 490, 81-85.
[156]
Xiao, Z.; Zhang, L.; Tian, X.; Fang, X. Fabrication and structural characterization of porous tungsten oxide nanowires. Nanotechnology, 2005, 16, 2647-2650.
[157]
Shieh, J.; Feng, H.M.; Hon, M.H.; Juang, H.Y. WO3 and W–Ti–O thin film gas sensors prepared by sol–gel dip-coating. Sens. Actuators B., 2002, 86, 75-80.
[158]
Shankar, N.; Yu, M.F.; Vanka, S.P.; Glumac, N.G. Synthesis of tungsten oxide (WO3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition. Mater. Lett., 2006, 60, 771-774.
[159]
Kim, T.S.; Kim, Y.B.; Yoo, K.S.; Sung, G.S.; Jung, H.J. Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor. Sens. Actuators B., 2000, 62, 102-108.
[160]
Lemire, C.; Lollman, D.B.; Al Mohammad, A.; Gillet, E.; Aguir, K. Reactive RF magnetron sputtering deposition of WO3 thin films. Sens. Actuators B., 2002, 84, 43-48.
[161]
Marquis, B.T.; Vetelino, J.F. A semiconducting metal oxide sensor array for the detection of NOx and NH3. Sens. Actuators B., 2001, 77, 100-110.
[162]
Regragui, M.; Jousseaume, V.; Addou, M.; Outzourhit, A.; Bernede, J.C.; El Idrissi, B. Electrical and optical properties of WO3 thin films. Thin Solid Films, 2001, 397, 238-243.
[163]
Sun, M.; Xu, N.; Cao, Y.W.; Yao, J.N.; Wang, E.G. A nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior. J. Mater. Res., 2000, 15, 927-933.
[164]
Di Fonzo, F.; Bailini, A.; Russo, V.; Baserga, A.; Cattaneo, D.; Beghi, M.G.; Ossi, P.M.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Synthesis and characterization of tungsten and tungsten oxide nanostructured films. Catal. Today, 2006, 116, 69-73.
[165]
Di Giulio, M.; Manno, D.; Micocci, G.; Serra, A.; Tepore, A. Sputter deposition of tungsten trioxide for gas sensing applications. J. Mater. Sci. Mater. Electron., 1998, 9, 317-322.
[166]
Siciliano, T.; Tepore, A.; Micocci, G.; Serra, A.; Manno, D.; Filippo, E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sens. Actuators B., 2008, 133, 321-326.
[167]
Kuchibhatla, S.V.; Karakoti, A.S.; Bera, D.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci., 2007, 52, 699-913.
[168]
Ponzoni, A.; Russo, V.; Bailini, A.; Casari, C.S.; Ferroni, M.; Bassi, A.L.; Migliori, A.; Morandi, V.; Ortolani, L.; Sberveglieri, G.; Bottani, C.E. Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles. Sens. Actuators B., 2011, 153, 340-346.