Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Review on the Formation of Anodic Metal Oxides and their Sensing Applications

Author(s): AbdElazim M. Mebed, Alaa M. Abd-Elnaiem, Waleed A. El-Said* and Tesleem B. Asafa

Volume 15, Issue 1, 2019

Page: [6 - 26] Pages: 21

DOI: 10.2174/1573413714666180817130835

Price: $65

Abstract

Anodization of valve metal such as those of Al, Ti, and W among others have been extensively studied largely because of their unique morphology and extensive applications including gas and bio-sensing. While large volumes of published materials are available on the oxide of each metal, a concise review of previous works on these anodic oxides is timely. Herein, we present an overview of the formation process and applications (with emphasis to gas and bio-sensing) of anodic metal oxides that have been extensively researched. While porous and nonporous metal oxides have been produced and applied, the former has been given much attention as it provides more reactive surface area making it sine-qua-non in nanoscience and nanotechnology. The large effective surface area enables their applications as templates for the fabrication of periodic arrays of nanostructures, e.g., nanowires, nanodots, and nanotubes for various sensing technologies. Porous structures with different shape and size can be obtained by modulating the anodization conditions such as current, time, voltage, purity of metal, doping element, type and concentration of the electrolyte, electrolyte temperature and the pre-treatment of the metal substrate. The fabrication procedure, characterization and applications of each anodic metal oxide are presented in this review.

Keywords: Anodization, anodic metal oxide, nanostructures, gas sensing, bio-sensing, porous structures.

Graphical Abstract

[1]
Chung, W.Y.; Kim, T.H.; Hong, Y.H.; Lee, D.D. Characterization of porous tin oxide thin films and their application to microsensor fabrication. Sens. Actuator B, 1995, 25, 482-485.
[2]
Faglia, G.; Comini, E.; Cristalli, A.; Sberveglieri, G.; Dori, L. Very low power consumption micromachined CO sensors. Sens. Actuator B, 1999, 55, 140-146.
[3]
Demarne, V.; Grisel, A. An integrated low-power thin-film CO gas sensor on silicon. Sens. Actuators, 1988, 13, 301-313.
[4]
Semancik, S.; Cavicchi, R.E.; Kreider, K.G.; Suehle, J.S.; Chaparala, P. Selected-area deposition of multiple active films for conductometric microsensor arrays. Sens. Actuator B, 1996, 34, 209-212.
[5]
Fang, G.; Liu, Z.; Zhang, Z.; Yao, K.L. Preparation of ZrO2‐SnO2 thin films by the sol‐gel technique and their gas sensitivity. Phys. Status Solidi, A., 1996, 156, 81-85.
[6]
Rao, G.T.; Rao, D.T. Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sens. Actuator B, 1999, 55, 166-169.
[7]
Solis, J.L.; Saukko, S.; Kish, L.; Granqvist, C.G.; Lantto, V. Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films, 2001, 391, 255-260.
[8]
Kimura, Y.; Itoh, K.; Yamaguchi, R.T.; Ishibashi, K.I.; Itaya, K.; Niwano, M. Room temperature observation of a Coulomb blockade phenomenon in aluminum nanodots fabricated by an electrochemical process. Appl. Phys. Lett., 2007, 90, 093119.
[9]
Li, F.; Zhu, M.; Liu, C.; Zhou, W.L.; Wiley, J.B. Patterned metal nanowire arrays from photolithographically-modified templates. J. Am. Chem. Soc., 2006, 128, 13342-13343.
[10]
Macák, J.M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed., 2005, 44, 2100-2102.
[11]
Ishibashi, K.I.; Yamaguchi, R.T.; Kimura, Y.; Niwano, M. Fabrication of titanium oxide nanotubes by rapid and homogeneous anodization in perchloric acid/ethanol mixture. J. Electrochem. Soc., 2008, 155, K10-K14.
[12]
Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A.; Ong, K.G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology, 2006, 17, 398-402.
[13]
Tsuchiya, H.; Schmuki, P. Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochem. Commun., 2005, 7, 49-52.
[14]
Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P. Formation of self-organized niobium porous oxide on niobium. Electrochem. Commun., 2005, 7, 97-100.
[15]
Sieber, I.V.; Schmuki, P. Porous tantalum oxide prepared by electrochemical anodic oxidation. J. Electrochem. Soc., 2005, 152, C639-C644.
[16]
Mukherjee, N.; Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A. Fabrication of nanoporous tungsten oxide by galvanostatic anodization. J. Mater. Res., 2003, 18, 2296-2299.
[17]
Stefanovich, G.B.; Pergament, A.L.; Velichko, A.A.; Stefanovich, L.A. Anodic oxidation of vanadium and properties of vanadium oxide films. J. Phys. Condens. Matter, 2004, 16, 4013-4024.
[18]
Tsuchiya, H.; Macak, J.M.; Sieber, I.; Schmuki, P. Self‐organized high‐aspect‐ratio nanoporous zirconium oxides prepared by electrochemical anodization. Small, 2005, 1, 722-725.
[19]
Yaeger, E. Comprehensive Treatise of Electrochemistry; Conway, B.E., Ed.; Plenum Press: New York, 1983, Vol. 7, pp. 301-398.
[20]
Cabrera, N.F.M.N.; Mott, N.F. Theory of the oxidation of metals. Rep. Prog. Phys., 1949, 12, 163-184.
[21]
Buff, H. Ueber das electrische Verhalten des aluminiums. Justus Liebigs Ann. Chem., 1857, 102, 265-284.
[22]
Keller, F.; Hunter, M.S.; Robinson, D.L. Structural features of oxide coatings on aluminum. J. Electrochem. Soc., 1953, 100, 411-419.
[23]
Skeldon, P.; Shimizu, K.; Thompson, G.E.; Wood, G.C. Fundamental studies elucidating anodic barrier-type film growth on aluminium. Thin Solid Films, 1985, 123, 127-133.
[24]
Sulka, G.D. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing,, 2008. Nanostructured Materials in Electrochemistry; Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany, 2008, pp. 1-116.
[25]
Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett., 1997, 71, 2770-2772.
[26]
Jessensky, O.; Müller, F.; Gösele, U. Self‐organized formation of hexagonal pore structures in anodic alumina. J. Electrochem. Soc., 1998, 145, 3735-3740.
[27]
Belwalkar, A.; Grasing, E.; Van Geertruyden, W.; Huang, Z.; Misiolek, W.Z. Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Membr. Sci., 2008, 319, 192-198.
[28]
Sulka, G.D.; Stroobants, S.; Moshchalkov, V.V.; Borghs, G.; Celis, J.P. Effect of tensile stress on growth of self-organized nanostructures on anodized aluminum. J. Electrochem. Soc., 2004, 151, B260-B264.
[29]
Masuda, H.; Yasui, K.; Sakamoto, Y.; Nakao, M.; Tamamura, T.; Nishio, K. Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated Al on Si. Jpn. J. Appl. Phys., 2001, 40, L1267-L1269.
[30]
Kikuchi, T.; Yamamoto, T.; Natsui, S.; Suzuki, R.O. Fabrication of anodic porous alumina by squaric acid anodizing. Electrochim. Acta, 2014, 123, 14-22.
[31]
Vico, J.M.; Jansen, F.; Maex, K.; Groeseneken, G.; Vereecken, P.M. Formation of porous alumina patterns on silicon. ECS Trans., 2007, 3, 85-93.
[32]
Fratila-Apachitei, L.E.; Tichelaar, F.D.; Thompson, G.E.; Terryn, H.; Skeldon, P.; Duszczyk, J.; Katgerman, L. A transmission electron microscopy study of hard anodic oxide layers on AlSi (Cu) alloys. Electrochim. Acta, 2004, 49, 3169-3177.
[33]
Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater., 2006, 5, 741-747.
[34]
Molchan, I.S.; Molchan, T.V.; Gaponenko, N.V.; Skeldon, P.; Thompson, G.E. Impurity-driven defect generation in porous anodic alumina. Electrochem. Commun., 2010, 12, 693-696.
[35]
Losic, D.; Losic, Jr, D. Preparation of porous anodic alumina with periodically perforated pores. Langmuir, 2009, 25, 5426-5431.
[36]
Biswajit, D. Investigation of nanoporous thin-film alumina templates. J. Electrochem. Soc., 2004, 151, D46-D50.
[37]
Li, F.; Zhang, L.; Metzger, R.M. On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater., 1998, 10, 2470-2480.
[38]
Fratila-Apachitei, L.E.; Terryn, H.; Skeldon, P.; Thompson, G.E.; Duszczyk, J.; Katgerman, L. Influence of substrate microstructure on the growth of anodic oxide layers. Electrochim. Acta, 2004, 49, 1127-1140.
[39]
Tsangaraki-Kaplanoglou, I.; Theohari, S.; Dimogerontakis, T.; Wang, Y.M.; Kuo, H.H.H.; Kia, S. Effect of alloy types on the anodizing process of aluminum. Surf. Coat. Technol., 2006, 200, 2634-2641.
[40]
Li, D.; Zhao, L.; Jiang, C.; Lu, J.G. Formation of anodic aluminum oxide with serrated nanochannels. Nano Lett., 2010, 10, 2766-2771.
[41]
Zhou, F.Y.; Al-Zenati, A.M.; Baron-Wiecheć, A.; Curioni, M.; Garcia-Vergara, S.J.; Habazaki, H.; Skeldon, P.; Thompson, G.E. Volume expansion factor and growth efficiency of anodic alumina formed in sulphuric acid. J. Electrochem. Soc., 2011, 158, C202-C214.
[42]
Vrublevsky, I.; Parkoun, V.; Sokol, V.; Schreckenbach, J.; Marx, G. The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime. Appl. Surf. Sci., 2004, 222, 215-225.
[43]
Abd-Elnaiem, A.M.; Mebed, A.M.; Gaber, A.; Abdel-Rahim, M.A. Effect of the anodization parameters on the volume expansion of anodized aluminum films. Int. J. Electrochem. Sci., 2013, 8, 10515-10525.
[44]
Kao, T.T.; Chang, Y.C. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids. Appl. Surf. Sci., 2014, 288, 654-659.
[45]
Stępniowski, W.J.; Bojar, Z. Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features. Surf. Coat. Technol., 2011, 206, 265-272.
[46]
Chung, C.K.; Liao, M.W.; Chang, H.C.; Lee, C.T. Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization. Thin Solid Films, 2011, 520, 1554-1558.
[47]
Abd-Elnaiem, A.M.; Gaber, A. Parametric study on the anodization of pure aluminum thin film used in fabricating nano-pores template. Int. J. Electrochem. Sci., 2013, 8, 9741-9751.
[48]
Banerjee, S.; Myung, Y.; Banerjee, P. Confined anodic aluminum oxide nanopores on aluminum wires. RSC Adv., 2014, 4, 7919-7926.
[49]
Furneaux, R.C.; Thompson, G.E.; Wood, G.C. The application of ultramicrotomy to the electronoptical examination of surface films on aluminium. Corros. Sci., 1978, 18, 853-881.
[50]
Long, J.; Borissova, A.; Wilson, A.D.; Wilson, J.C.A.B. Sample preparation of anodised aluminium oxide coatings for scanning electron microscopy. Micron, 2017, 101, 87-94.
[51]
Diggle, J.W.; Downie, T.C.; Goulding, C.W. Anodic oxide films on aluminum. Chem. Rev., 1969, 69, 365-405.
[52]
O’sullivan, J.P.; Wood, G.C. In: The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium,, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1970, pp. 511-543.
[53]
Wood, G.C.; Skeldon, P.; Thompson, G.E.; Shimizu, K. A model for the incorporation of electrolyte species into anodic alumina. J. Electrochem. Soc., 1996, 143, 74-83.
[54]
Hoar, T.P.; Mott, N.F. A mechanism for the formation of porous anodic oxide films on aluminium. J. Phys. Chem. Solids, 1959, 9, 97-99.
[55]
Patermarakis, G. Transformation of the overall strict kinetic model governing the growth of porous anodic Al2O3 films on aluminium to a form applicable to the non-stirred. Electrochim. Acta, 1996, 41, 2601-2611.
[56]
Cheng, C.; Ngan, A.H.W. Modelling and simulation of self-ordering in anodic porous alumina. Electrochim. Acta, 2011, 56, 9998-10008.
[57]
Güntherschulze, A.; Betz, H. Die Bewegung der Ionengitter von Isolatoren bei extremen elektrischen Feldstärken. Z. Phys., 1934, 92, 367-374.
[58]
Li, Y.; Shimada, H.; Sakairi, M.; Shigyo, K.; Takahashi, H.; Seo, M. Formation and breakdown of anodic oxide films on aluminum in boric acid/borate solutions. J. Electrochem. Soc., 1997, 144, 866-876.
[59]
Fromhold, A.T. Theory of Metal Oxidation; North Holland Pub. Co.: Amsterdam,and New York, 1976.
[60]
Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268, 1466-1468.
[61]
Zhou, J.H.; He, J.P.; Zhao, G.W.; Zhang, C.X.; Zhao, J.S.; Hu, H.P. Alumina nanostructures prepared by two-step anodization process. Trans. Nonferrous Met. Soc. China, 2007, 17, 82-86.
[62]
Mohajeri, M.; Akbarpour, H.; Karimkhani, V. Synthesis of highly ordered carbon nanotubes/nanoporous anodic alumina composite membrane and potential application in heavy metal ions removal from industrial wastewater. Mater. Today Proc, 2017, 4, 4906-4911.
[63]
Henzie, J.; Kwak, E.S.; Odom, T.W. Mesoscale metallic pyramids with nanoscale tips. Nano Lett., 2005, 5, 1199-1202.
[64]
Asoh, H.; Nishio, K.; Nakao, M.; Tamamura, T.; Masuda, H. Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J. Electrochem. Soc., 2001, 148, B152-B156.
[65]
Yasui, K.; Nishio, K.; Nunokawa, H.; Masuda, H. Ideally ordered anodic porous alumina with Sub-50 nm hole intervals based on imprinting using metal molds. J. Vac. Sci. Technol. B, 2005, 23, L9-L12.
[66]
Jani, A.M.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci., 2013, 58, 636-704.
[67]
Ji, R. Templated Fabrication of Periodic Nanostructures Based on Laser Interference Lithography PhD Thesis, Universität Halle: Wittenberg, June 12,., 2008.
[68]
Mikulskas, I.; Juodkazis, S.; Tomasiunas, R.; Dumas, J.G. Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater., 2001, 13, 1574-1574.
[69]
Choi, J.; Luo, Y.; Wehrspohn, R.B.; Hillebrand, R.; Schilling, J.; Gösele, U. Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys., 2003, 94, 4757-4762.
[70]
Sun, Z.; Kim, H.K. Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films. Appl. Phys. Lett., 2002, 81, 3458-3460.
[71]
Li, Y.; Zheng, M.; Ma, L.; Shen, W. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology, 2006, 17, 5101-5105.
[72]
Lee, W.; Ji, R.; Ross, C.A.; Gösele, U.; Nielsch, K. Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography. Small, 2006, 2, 978-982.
[73]
Nagel, D.J. Technologies for Micrometer and Nanometer Pattern and Material Transfer. Direct Write Technologies for Rapid Prototyping Applications; Academic: New York, 2002, pp. 557-701.
[74]
Lee, W.; Kim, J.C.; Gösele, U. Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv. Funct. Mater., 2010, 20, 21-27.
[75]
Kim, B.; Youn, Y.; Park, Y.S.; Moon, D.N.; Kang, K.; Han, S.; Lee, J.S. Impurity-driven formation of branched pores in porous anodic alumina. Scripta . Mater., 2016, 122, 102-105.
[76]
Abd-Elnaiem, A.M.; Mebed, A.M.; Wojciech, J.S.; Czujko, T. Characterization of arrangement and geometry of porous anodic alumina formed by one-step anodization of Al-1wt% Si thin films. Surf. Coat. Technol., 2016, 307, 359-365.
[77]
Abd-Elnaiem, A.M.; Mebed, A.M.; Gaber, A.; Abdel-Rahim, M.A. Tailoring the porous nanostructure of porous anodic alumina membrane with the impurity control. J. Alloys Compd., 2016, 659, 270-278.
[78]
Vanpaemel, J.; Abd-Elnaiem, A.M.; De Gendt, S.; Vereecken, P.M. The formation mechanism of 3D porous anodized aluminum oxide templates from an aluminum film with copper impurities. J. Phys. Chem. C, 2015, 119, 2105-2112.
[79]
Wang, W.; Tian, M.; Abdulagatov, A.; George, S.M.; Lee, Y.C.; Yang, R. Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. Nano Lett., 2012, 12, 655-660.
[80]
Young, L. Anodic Oxide Films London, New York Academic Press., 1961.
[81]
Karim, F.; Bora, T.; Chaudhari, M.; Habib, K.; Mohammed, W.; Dutta, J. Measurement of aluminum oxide film by Fabry–Perot interferometry and scanning electron microscopy. J. Saudi Chem. Soc., 2016, 21, 938-942.
[82]
Simond, O.; Schaller, V.; Comninellis, C. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim. Acta, 1997, 42, 2009-2012.
[83]
Gong, D.; Grimes, C.A.; Varghese, O.K.; Hu, W.; Singh, R.S.; Chen, Z.; Dickey, E.C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res., 2001, 16, 3331-3334.
[84]
Su, Z.; Zhou, W. Formation mechanism of porous anodic aluminium and titanium oxides. Adv. Mater., 2008, 20, 3663-3667.
[85]
Amsel, G.; Samuel, D. The mechanism of anodic oxidation. J. Phys. Chem. Solids, 1962, 23, 1707-1718.
[86]
Mishra, P.; Hebert, K.R. Flow instability mechanism for formation of self-ordered porous anodic oxide films. Electrochim. Acta, 2016, 222, 1186-1190.
[87]
Tajima, S.; Baba, N.; Shimizu, K.; Mizuki, I. Photoluminescence of anodic oxide films on aluminium. Active Passive Electron. Comp., 1976, 3, 91-95.
[88]
Chu, S.Z.; Wada, K.; Inoue, S.; Isogai, M.; Katsuta, Y.; Yasumori, A. Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization. J. Electrochem. Soc., 2006, 153, B384-B391.
[89]
Gorokh, G.G.; Pashechko, M.I.; Borc, J.T.; Lozovenko, A.A.; Kashko, I.A.; Latos, A.I. Matrix coatings based on anodic alumina with carbon nanostructures in the pores. Appl. Surf. Sci., 2018, 433, 829-835.
[90]
Cui, X.; Zhao, Q.; Li, Z.; Sun, Z.; Jiang, Z. Cyclic voltammetry as a tool to estimate the effective pore density of an anodic aluminium oxide template. Nanotechnology, 2007, 18, 5701-5705.
[91]
Li, A.P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., 1998, 84, 6023-6026.
[92]
Zaraska, L.; Jaskuła, M.; Sulka, G.D. Porous anodic alumina layers with modulated pore diameters formed by sequential anodizing in different electrolytes. Mater. Lett., 2016, 171, 315-318.
[93]
Bai, A.; Hu, C.C.; Yang, Y.F.; Lin, C.C. Pore diameter control of anodic aluminum oxide with ordered array of nanopores. Electrochim. Acta, 2008, 53, 2258-2264.
[94]
Kashi, M.A.; Ramazani, A. The effect of temperature and concentration on the self-organized pore formation in anodic alumina. J. Phys. D Appl. Phys., 2005, 38, 2396-2399.
[95]
Sulka, G.D.; Stępniowski, W.J. Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta, 2009, 54, 3683-3691.
[96]
Mebed, A.M.; Abd-Elnaiem, A.M.; Najm, M.A. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates. Appl. Phys., A., 2016, 122, 565.
[97]
Abd-Elnaiem, A.M.; Asafa, T.B.; Trivinho-Strixino, F.; Delgado-Silva, A.D.O.; Callewaert, M.; De Malsche, W. Optical reflectance from anodized Al-0.5 wt% Cu thin films: Porosity and refractive index calculations. J. Alloys Compd., 2017, 721, 741-749.
[98]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Bojar, Z. Ultra-small nanopores obtained by self-organized anodization of aluminum in oxalic acid at low voltages. Mater. Lett., 2013, 111, 20-23.
[99]
Martin, J.; Manzano, C.V.; Caballero-Calero, O.; Martin-Gonzalez, M. High-aspect-ratio and highly ordered 15-nm porous alumina templates. ACS Appl. Mater. Interfaces, 2013, 5, 72-79.
[100]
Nishinaga, O.; Kikuchi, T.; Natsui, S.; Suzuki, R.O. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing. Sci. Rep., 2013, 3, 2748-2748.
[101]
Manzano, C.V.; Martín, J.; Martín-González, M.S. Ultra-narrow 12 nm porediameter self-ordered anodic alumina templates. Microporous Mesoporous Mater., 2014, 184, 177-183.
[102]
Abd-Elnaiem, A.M.; Mebed, A.M.; El-Said, W.A.; Abdel-Rahim, M.A. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage. Thin Solid Films, 2014, 570, 49-56.
[103]
Norek, M.; Dopierała, M.; Stępniowski, W.J. Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina. J. Electroanal. Chem., 2015, 750, 79-88.
[104]
Masuda, H.; Yada, K.; Osaka, A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys., 1998, 37, L1340-L1342.
[105]
Roslyakov, I.V.; Gordeeva, E.O.; Napolskii, K.S. Role of electrode reaction kinetics in self-ordering of porous anodic alumina. Electrochim. Acta, 2017, 241, 362-369.
[106]
Zhao, N.Q.; Jiang, X.X.; Shi, C.S.; Li, J.J.; Zhao, Z.G.; Du, X.W. Effects of anodizing conditions on anodic alumina structure. J. Mater. Sci., 2007, 42, 3878-3882.
[107]
Ono, S.; Saito, M.; Ishiguro, M.; Asoh, H. Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc., 2004, 151, B473-B478.
[108]
Friedman, A.L.; Brittain, D.; Menon, L. Roles of pH and acid type in the anodic growth of porous alumina. J. Chem. Phys., 2007, 127, 154717-154717.
[109]
Xu, C.; Gao, W. Pilling-Bedworth ratio for oxidation of alloys. Mater. Res. Innov., 2000, 3, 231-235.
[110]
Valeev, R.G.; Stashkova, V.V.; Chukavin, A.I.; Volkov, V.A.; Alalykin, A.S.; Syugaev, A.V.; Beltiukov, A.N.; Gil’mutdinov, F.Z.; Kriventsov, V.V.; Mezentsev, N.A. Ni nanostructures in porous anodic alumina matrices: Structure and cathodic properties in hydrogen release reactions. Phys. Procedia, 2016, 84, 407-414.
[111]
Ide, S.; Capraz, Ö.Ö.; Shrotriya, P.; Hebert, K.R. Oxide microstructural changes accompanying pore formation during anodic oxidation of aluminum. Electrochim. Acta, 2017, 232, 303-309.
[112]
Patermarakis, G.; Moussoutzanis, K. Transformation of porous structure of anodic alumina films formed during galvanostatic anodising of aluminium. J. Electroanal. Chem., 2011, 659, 176-190.
[113]
Ateş, S.; Baran, E. The nanoporous anodic alumina oxide formed by two-step anodization. Thin Solid Films, 2018, 648, 94-102.
[114]
Thompson, G.E.; Wood, G.C. 5-Anodic films on aluminum. Treatise Mater. Sci. Technol., 1983, 23, 205-329.
[115]
Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gösele, U. Self-ordering regimes of porous alumina: The 10 porosity rule. Nano Lett., 2002, 2, 677-680.
[116]
Kim, K.T.; Sim, J.; Cho, S.M. Hydrogen gas sensor using Pd nanowires electro-deposited into anodized alumina template. IEEE Sens. J., 2006, 6, 509-513.
[117]
Lu, C.; Chen, Z. High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide. Sens. Actuators B., 2009, 140, 109-115.
[118]
Artzi-Gerlitz, R.; Benkstein, K.D.; Lahr, D.L.; Hertz, J.L.; Montgomery, C.B.; Bonevich, J.E.; Semancik, S.; Tarlov, M.J. Fabrication and gas sensing performance of parallel assemblies of metal oxide nanotubes supported by porous aluminum oxide membranes. Sens. Actuators B., 2009, 136, 257-264.
[119]
Ding, D.; Chen, Z.; Rajaputra, S.; Singh, V. Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode. Sens. Actuators B., 2007, 124, 12-17.
[120]
Ding, D.; Chen, Z.; Lu, C. Hydrogen sensing of nanoporous palladium films supported by anodic aluminum oxides. Sens. Actuators B., 2006, 120, 182-186.
[121]
Han, N.; Deng, P.; Chen, J.; Chai, L.; Gao, H.; Chen, Y. Electrophoretic deposition of metal oxide films aimed for gas sensors application: The role of anodic aluminum oxide (AAO)/Al composite structure. Sens. Actuators B., 2010, 144, 267-273.
[122]
Rumiche, F.; Wang, H.H.; Hu, W.S.; Indacochea, J.E.; Wang, M.L. Anodized aluminum oxide (AAO) nanowell sensors for hydrogen detection. Sens. Actuators B., 2008, 134, 869-877.
[123]
Thompson, G.E.; Furneaux, R.C.; Wood, G.C.; Richardson, J.A.; Goode, J.S. Nucleation and growth of porous anodic films on aluminium. Nature, 1978, 272, 433-435.
[124]
Ono, S.; Ichinose, H.; Masuko, N. The high resolution observation of porous anodic films formed on aluminum in phosphoric acid solution. Corros. Sci., 1992, 33, 841-850.
[125]
El-Said, W.A.; Yea, C.H.; Jung, M.; Kim, H.; Choi, J.W. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography. Ultramicroscopy, 2010, 110, 676-681.
[126]
Kafi, M.A.; El-Said, W.A.; Kim, T.H.; Choi, J.W. Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays. Biomaterials, 2012, 33, 731-739.
[127]
Jung, M.; El-Said, W.A.; Choi, J.W. Fabrication of gold nanodot arrays on a transparent substrate as a nanobioplatform for label-free visualization of living cells. Nanotechnology, 2011, 22, 235304-235304.
[128]
El-Said, W.A.; Kim, T.H.; Kim, H.; Choi, J.W. Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering. PLoS One, 2011, 6, e15836-e15836.
[129]
Grimes, C.A. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem., 2007, 17, 1451-1457.
[130]
Shimizu, Y.; Kuwano, N.; Hyodo, T.; Egashira, M. High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd. Sens. Actuators B., 2002, 83, 195-201.
[131]
Mor, G.K.; Varghese, O.K.; Paulose, M.; Grimes, C.A. A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor. Sensor . Lett., 2003, 1, 42-46.
[132]
Varghese, O.K.; Gong, D.; Paulose, M.; Ong, K.G.; Grimes, C.A. Hydrogen sensing using titania nanotubes. Sens. Actuators B., 2003, 93, 338-344.
[133]
Varghese, O.K.; Mor, G.K.; Paulose, M.; Grimes, C.A. A Titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol., 2004, 4, 733-737.
[134]
Varghese, O.K.; Yang, X.; Kendig, J.; Paulose, M.; Zeng, K.; Palmer, C.; Ong, K.G.; Grimes, C.A. A transcutaneous hydrogen sensor: From design to application. Sensor . Lett., 2006, 4, 120-128.
[135]
Joo, S.; Muto, I.; Hara, N. Hydrogen gas sensor using Pt- and Pd-added anodic TiO2 nanotube films. J. Electrochem. Soc., 2010, 157, J221-J226.
[136]
Moon, J.; Kemell, M.; Kukkola, J.; Punkkinen, R.; Hedman, H.P.; Suominen, A.; Mäkilä, E.; Tenho, M.; Tuominen, A.; Kim, H. Gas sensor using anodic TiO2 thin film for monitoring hydrogen. Procedia Eng., 2012, 47, 791-794.
[137]
Lin, H.W.; Chang, Y.H.; Chen, C. Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method. J. Electrochem. Soc., 2011, 159, K5-K9.
[138]
Yang, H.Y.; Cheng, X.L.; Zhang, X.F.; Zheng, Z.K.; Tang, X.F.; Xu, Y.M.; Gao, S.; Zhao, H.; Huo, L.H. A novel sensor for fast detection of triethylamine based on rutile TiO2 nanorod arrays. Sens. Actuators B., 2014, 205, 322-328.
[139]
Kimura, Y.; Kimura, S.; Kojima, R.; Bitoh, M.; Abe, M.; Niwano, M. Micro-scaled hydrogen gas sensors with patterned anodic titanium oxide nanotube film. Sens. Actuators B., 2013, 177, 1156-1160.
[140]
Kawasaki, H.; Namba, J.; Iwatsuji, K.; Suda, Y.; Wada, K.; Ebihara, K.; Ohshima, T. NOx gas sensing properties of tungsten oxide thin films synthesized by pulsed laser deposition method. Appl. Surf. Sci., 2002, 197, 547-551.
[141]
Boulmani, R.; Bendahan, M.; Lambert-Mauriat, C.; Gillet, M.; Aguir, K. Correlation between rf-sputtering parameters and WO3 sensor response towards ozone. Sens. Actuators B., 2007, 125, 622-627.
[142]
Stankova, M.; Vilanova, X.; Llobet, E.; Calderer, J.; Bittencourt, C.; Pireaux, J.J.; Correig, X. Influence of the annealing and operating temperatures on the gas sensing properties of rf sputtered WO3 thin-film sensors. Sens. Actuators B., 2005, 105, 271-277.
[143]
Badilescu, S.; Ashrit, P.V. Study of sol-gel prepared nanostructured WO3 thin films and composites for electrochromic applications. Solid State Ion., 2003, 158, 187-197.
[144]
Ozkan, E.; Lee, S.H.; Liu, P.; Tracy, C.E.; Tepehan, F.Z.; Pitts, J.R.; Deb, S.K. Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State lonics,, 2002, 149, 139-146.
[145]
Aliev, A.E.; Shin, H.W. Nanostructured materials for electrochromic devices. Solid State Ionics., 2002, 154, 425-431.
[146]
Antonaia, A.; Addonizio, M.L.; Minarini, C.; Polichetti, T.; Vittori-Antisari, M. Improvement in electrochromic response for an amorphous/crystalline WO3 double layer. Electrochim. Acta, 2001, 46, 2221-2227.
[147]
Granqvist, C.G. Electrochromic tungsten oxide films: Review of progress 1993-1998. Sol. Energy Mater. Sol. Cells, 2000, 60, 201-262.
[148]
Lee, K.H.; Fang, Y.K.; Lee, W.J.; Ho, J.J.; Chen, K.H.; Liao, K.C. Novel electrochromic devices (ECD) of tungsten oxide (WO3) thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor. Sens. Actuators B., 2000, 69, 96-99.
[149]
Sun, M.; Xu, N.; Cao, Y.W.; Yao, J.N.; Wang, E.G. Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior. J. Mater. Res., 2000, 15, 927-933.
[150]
Tsuchiya, H.; Macak, J.M.; Sieber, I.; Taveira, L.; Ghicov, A.; Sirotna, K.; Schmuki, P. Self-organized porous WO3 formed in NaF electrolytes. Electrochem. Commun., 2005, 7, 295-298.
[151]
Berger, S.; Tsuchiya, H.; Ghicov, A.; Schmuki, P. High photocurrent conversion efficiency in self-organized porous WO3. Appl. Phys. Lett., 2006, 88, 203119.
[152]
De Tacconi, N.R.; Chenthamarakshan, C.R.; Yogeeswaran, G.; Watcharenwong, A.; De Zoysa, R.S.; Basit, N.A.; Rajeshwar, K. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates, influence of process variables on morphology and photoelectrochemical response. J. Phys. Chem. B, 2006, 110, 25347-25355.
[153]
Zhao, J.; Wang, X.; Xu, R.; Mi, Y.; Li, Y. Preparation and growth mechanism of niobium oxide microcones by the anodization method. Electrochem. Solid-State Lett., 2007, 10, C31-C33.
[154]
Xiao, Z.; Zhang, L.; Tian, X.; Fang, X. Synthesis and characterization of tungsten oxide nanorods. J. Mater. Res., 2004, 19, 3665-3670.
[155]
Xiao, Z.; Zhang, L.; Tian, X.; Fang, X. Nanostructured WO3 deposited by modified thermal evaporation for gas-sensing applications. Thin Solid Films, 2005, 490, 81-85.
[156]
Xiao, Z.; Zhang, L.; Tian, X.; Fang, X. Fabrication and structural characterization of porous tungsten oxide nanowires. Nanotechnology, 2005, 16, 2647-2650.
[157]
Shieh, J.; Feng, H.M.; Hon, M.H.; Juang, H.Y. WO3 and W–Ti–O thin film gas sensors prepared by sol–gel dip-coating. Sens. Actuators B., 2002, 86, 75-80.
[158]
Shankar, N.; Yu, M.F.; Vanka, S.P.; Glumac, N.G. Synthesis of tungsten oxide (WO3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition. Mater. Lett., 2006, 60, 771-774.
[159]
Kim, T.S.; Kim, Y.B.; Yoo, K.S.; Sung, G.S.; Jung, H.J. Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor. Sens. Actuators B., 2000, 62, 102-108.
[160]
Lemire, C.; Lollman, D.B.; Al Mohammad, A.; Gillet, E.; Aguir, K. Reactive RF magnetron sputtering deposition of WO3 thin films. Sens. Actuators B., 2002, 84, 43-48.
[161]
Marquis, B.T.; Vetelino, J.F. A semiconducting metal oxide sensor array for the detection of NOx and NH3. Sens. Actuators B., 2001, 77, 100-110.
[162]
Regragui, M.; Jousseaume, V.; Addou, M.; Outzourhit, A.; Bernede, J.C.; El Idrissi, B. Electrical and optical properties of WO3 thin films. Thin Solid Films, 2001, 397, 238-243.
[163]
Sun, M.; Xu, N.; Cao, Y.W.; Yao, J.N.; Wang, E.G. A nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior. J. Mater. Res., 2000, 15, 927-933.
[164]
Di Fonzo, F.; Bailini, A.; Russo, V.; Baserga, A.; Cattaneo, D.; Beghi, M.G.; Ossi, P.M.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Synthesis and characterization of tungsten and tungsten oxide nanostructured films. Catal. Today, 2006, 116, 69-73.
[165]
Di Giulio, M.; Manno, D.; Micocci, G.; Serra, A.; Tepore, A. Sputter deposition of tungsten trioxide for gas sensing applications. J. Mater. Sci. Mater. Electron., 1998, 9, 317-322.
[166]
Siciliano, T.; Tepore, A.; Micocci, G.; Serra, A.; Manno, D.; Filippo, E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sens. Actuators B., 2008, 133, 321-326.
[167]
Kuchibhatla, S.V.; Karakoti, A.S.; Bera, D.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci., 2007, 52, 699-913.
[168]
Ponzoni, A.; Russo, V.; Bailini, A.; Casari, C.S.; Ferroni, M.; Bassi, A.L.; Migliori, A.; Morandi, V.; Ortolani, L.; Sberveglieri, G.; Bottani, C.E. Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles. Sens. Actuators B., 2011, 153, 340-346.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy