[1]
Mook-Kanamori, B.B.; Geldhoff, M.; van der Poll, T.; van de Beek, D. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin. Microbiol. Rev., 2011, 24, 57-591.
[2]
Johnson, H.L.; Deloria-Knoll, M.; Levine, O.S.; Stoszek, S.K.; Hance, L.F.; Reithinger, R.; Muenz, L.R.; O’Brien, K.L. Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: The pneumococcal global serotype project. PLoS Med., 2010, 7, e1000348.
[3]
Publication, W. Pneumococcal vaccines WHO position paper–2012–recommendations. Vaccine, 2012, 30, 4717-4718.
[4]
Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Höök, M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol., 2014, 12, 49-62.
[5]
Bergmann, S.; Hammerschmidt, S. Versatility of pneumococcal surface proteins. Microbiology, 2006, 152, 295-303.
[6]
Tarahomjoo, S. Bioinformatic analysis of surface proteins of Streptococcus pneumoniae serotype 19F for identification of vaccine candidates. American. J. Microbiol. Res., 2014, 2, 174-177.
[7]
Tarahomjoo, S. Recent approaches in vaccine development against Streptococcus pneumoniae. J. Mol. Microbiol. Biotechnol., 2014, 24, 215-227.
[8]
Novotný. Jí.; Handschumacher, M.; Haber, E.; Bruccoleri, R.E.; Carlson, W.B.; Fanning, D.W.; Smith, J.A.; Rose, G.D. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci. , 1986, 83, 226-230.
[9]
Quijada, L.; Requena, J.M.; Soto, M.; Gómez, L.C.; Guzman, F.; Patarroyo, M.E.; Alonso, C. Mapping of the linear antigenic determinants of the Leishmania infantum hsp70 recognized by leishmaniasis sera. Immunol. Lett., 1996, 52, 73-79.
[10]
Faria, A.R.; Costa, M.M.; Giusta, M.S.; Grimaldi, Jr G.; Penido, M.L.; Gazzinelli, R.T.; Andrade, H.M. High-throughput analysis of synthetic peptides for the immunodiagnosis of canine visceral leishmaniasis. PLoS Negl. Trop. Dis., 2011, 5, e1310.
[11]
Zhao, Z.; Sun, H-Q.; Wei, S-S.; Li, B.; Feng, Q.; Zhu, J.; Zeng, H.; Zou, Q-M.; Wu, C. Multiple B-cell epitope vaccine induces a Staphylococcus Enterotoxin B-specific IgG1 protective response against MRSA infection. Sci. Rep., 2015, 5, 12371.
[12]
Lu, Y.; Ding, J.; Liu, W.; Chen, Y-H. A candidate vaccine against influenza virus intensively improved the immunogenicity of a neutralizing epitope. Int. Arch. Allergy Immunol., 2002, 127, 245-250.
[13]
Kelly, D.F.; Rappuoli, R. Reverse vaccinology and vaccines for
serogroup B Neisseria meningitides. Hot Topics Infect. Immun.
Child., 2005, 217-223
[14]
Assis, L.; Sousa, J.; Pinto, N.; Silva, A.; Vaz, A.; Andrade, P.; Carvalho, E.; De Melo, M. B‐cell epitopes of antigenic proteins in Leishmania infantum: an in silico analysis. Parasite Immunol., 2014, 36, 313-323.
[15]
Doytchinova, I.A.; Flower, D.R. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J., 2008, 1, 4.
[16]
Puigbo, P.; Guzman, E.; Romeu, A.; Garcia-Vallve, S. OPTIMIZER: A web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res., 2007, 35, W126-W131.
[17]
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31, 3406-3415.
[18]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, Se.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server; Proteom. Protocol Handbook, 2005, pp. 571-607.
[19]
Cheng, J.; Randall, A.Z.; Sweredoski, M.J.; Baldi, P. SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Res., 2005, 33, W72-W76.
[20]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5, 725-738.
[21]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35, W407-W410.
[22]
Tarahomjoo, S. In silico Analysis of Surface Proteins of Streptococcus pneumoniae Serotype 19F for Identification of Immunoprotective Epitopes. American. J. Microbiol. Res., 2015, 3, 190-196.
[23]
Chen, X.; Zaro, J.L.; Shen, W-C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev., 2013, 65, 1357-1369.
[24]
Li, J.; Zhou, J.; Wu, Y.; Yang, S.; Tian, D. GC-content of synonymous codons profoundly influences amino acid usage. G3: Genes Genomes. Genetics, 2015, 5, 2027-2036.
[25]
Clements, J.D. Construction of a nontoxic fusion peptide for immunization against Escherichia coli strains that produce heat-labile and heat-stable enterotoxins. Infect. Immun., 1990, 58, 1159-1166.
[26]
Seo, S.W.; Yang, J.; Jung, G.Y. Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli. Biotechnol. Bioeng., 2009, 104, 611-616.
[27]
Mathews, D.H.; Sabina, J.; Zuker, M.; Turner, D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure1. J. Mol. Boil., 1999, 288, 911-940.
[28]
Bachmair, A.; Finley, D.; Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science, 1986, 234, 179-186.
[29]
Guruprasad, K.; Reddy, B.B.; Pandit, M.W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Des. Sel., 1990, 4, 155-161.
[30]
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88, 1895-1898.
[31]
Szilágyi, A.; Závodszky, P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Structure, 2000, 8, 493-504.
[32]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Boil., 1982, 157, 105-132.
[33]
Singh, S.M.; Panda, A.K. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng., 2005, 99, 303-310.
[34]
Yin, J.; Li, G.; Ren, X.; Herrler, G. Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J. Biotechnol., 2007, 127, 335-347.
[35]
Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics, 2009, 25, 2200-2207.