Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

3D-QSAR Studies of S-DABO Derivatives as Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors

Author(s): Yueping Wang, Jie Chang, Jiangyuan Wang, Peng Zhong, Yufang Zhang, Christopher Cong Lai and Yanping He*

Volume 16, Issue 8, 2019

Page: [868 - 881] Pages: 14

DOI: 10.2174/1570180815666180810112321

Price: $65

Abstract

Background: S-dihydro-alkyloxy-benzyl-oxopyrimidines (S-DABOs) as non-nucleoside reverse transcriptase inhibitors have received considerable attention during the last decade due to their high potency against HIV-1.

Methods: In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) of a series of 38 S-DABO analogues developed in our lab was studied using Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). The Docking/MMFF94s computational protocol based on the co-crystallized complex (PDB ID: 1RT2) was used to determine the most probable binding mode and to obtain reliable conformations for molecular alignment. Statistically significant CoMFA (q2=0.766 and r2=0.949) and CoMSIA (q2=0.827 and r2=0.974) models were generated using the training set of 30 compounds on the basis of hybrid docking-based and ligand-based alignment.

Results: The predictive ability of CoMFA and CoMSIA models was further validated using a test set of eight compounds with predictive r2 pred values of 0.843 and 0.723, respectively.

Conclusion: The information obtained from the 3D contour maps can be used in designing new SDABO derivatives with improved HIV-1 inhibitory activity.

Keywords: 3D-QSAR, CoMFA, CoMSIA, NNRTIs, S-DABOs, docking.

Graphical Abstract

[1]
Gonzalez-S.F.. Martin-G.J.; The neuropathogenesis of AIDS. Nat. Rev. Immunol., 2005, 5, 69-81.
[3]
Guo, Y.; Zhou, P.P.; Zhang, S.Y.; Fan, X.W.; Dou, Y.W.; Shi, X.L. Generation of a long-acting fusion inhibitor against HIV-1? MedChemComm, 2018, 9, 1226-1231.
[http://dx.doi.org/10.1039/c8md00124c]
[4]
Zhan, P.; Pannecouque, C.; Clercq, E.D.; Liu, X.Y. Anti-HIV drug discovery and development: Current innovations and future trends. J. Med. Chem., 2016, 59, 2849-2878.
[5]
Li, G.; Clercq, E.D. HIV genome-wide protein associations: A review of 30 years of research. Microbiol. Mol. Biol. Rev., 2016, 80, 679-731.
[6]
Clercq, E.D. Non-nucleoside reverse transcriptase inhibitors (NNRTIs): Past, present, and future. Chem. Biodivers., 2004, 1, 44-64.
[7]
Hosseini, Y.; Mollica, A.; Mirzaie, S. Structure-based virtual screening efforts against HIV-1 reverse transcriptase to introduce the new potent non-nucleoside reverse transcriptase inhibitor. J. Mol. Struct., 2016, 1125, 592-600.
[8]
Corbett, J.W. A review of recent HIV-1 non-nucleoside reverse transcriptase inhibitor research activity. Curr. Med. Chem., 2002, 1, 119-140.
[9]
Sahlberg, C.; Zhou, X.X. Development of non-nucleoside reverse transcriptase inhibitors for anti-HIV therapy. Antiinfect. Agents Med. Chem., 2008, 7, 101-117.
[10]
Fulco, P.P.; McNicholl, I.R. Etravirine and rilpivirine: Nonnucleoside reverse transcriptase inhibitors with activity against human immunodeficiency virus type 1 strains resistant to previous nonnucleoside agents. Pharmacotherapy, 2009, 29, 281-294.
[11]
Sharma, M.; Saravolatz, L.D. Rilpivirine: A new non-nucleoside reverse transcriptase inhibitor. J. Antimicrob. Chemother., 2013, 68, 250-256.
[12]
Balamane, M.; Varghese, V.; Melikian, G.L.; Fessel, W.J.; Katzenstein, D.A.; Shafer, R.W. Panel of prototypical recombinant infectious molecular clones resistant to nevirapine, efavirenz, etravirine, and rilpivirine. Antimicrob. Agents Chemother., 2012, 56, 4522-4524.
[13]
Gray, W.T.; Frey, K.M.; Laskey, S.B.; Mislak, A.C.; Spasov, K.A.; Lee, W.G.; Bollini, M.; Siliciano, R.F.; Jorgensen, W.L.; Anderson, K.S. Potent inhibitors active against HIV reverse transcriptase with K101P, a mutation conferring rilpivirine resistance. ACS Med. Chem. Lett., 2015, 6, 1075-1079.
[14]
Zhou, Z.X.; Liu, T.; Kang, D.W.; Huo, Z.P.; Wu, G.C.; Daelemans, D.; Clercq, E.D.; Pannecouque, C.; Zhan, P.; Liu, X.Y. Discovery of novel diarylpyrimidines as potent HIV-1 NNRTIs by investigating the chemical space of a less explored “hydrophobic channel”. Org. Biomol. Chem., 2018, 16, 1014-1028.
[15]
Lu, X.Y.; Yang, J.P.; Kang, D.W.; Gao, P.; Daelemans, D.; Clercq, E.D.; Pannecouque, C.; Zhan, P.; Liu, X.Y. The discovery of novel diarylpyri(mi)dine derivatives with high level activity against a wide variety of HIV-1 strains as well as against HIV-2. Bioorg. Med. Chem., 2018, 26, 2051-2060.
[16]
Jin, K.J.; Yin, H.; Clercq, E.D.; Pannecouque, C.; Meng, G.; Chen, F.E. Discovery of biphenyl-substituted diarylpyrimidines as nonnucleoside reverse transcriptase inhibitors with high potency against wild-type and mutant HIV-1. Eur. J. Med. Chem., 2018, 145, 726-734.
[17]
Madni, M.; Hameed, S.; Ahmed, M.N.; Tahir, M.N.; Al-Masoudi, N.A.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med. Chem. Res., 2017, 26, 2653-2665.
[18]
Artico, M. Selected non-nucleoside reverse transcriptase inhibitors (NNRTIs): the DABOs family. Drugs Future, 2002, 27, 159-175.
[19]
Yu, M.; Fan, E.; Wu, J.; Liu, X.Y. Recent advances in the DABOs family as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Curr. Med. Chem., 2011, 18, 2376-2385.
[20]
Yang, S.; Chen, F.E.; Clercq, E.D. Dihydro-alkoxyl- benzyl-oxopyrimidine derivatives (DABOs) as non-nucleoside reverse transcriptase inhibitors: An update review (2001-2011). Curr. Med. Chem., 2012, 19, 152-162.
[21]
Rao, Z.K.; Long, J.; Li, C. Zhang, S.S.; He, M.; Ou, L.C.; Zheng, Y.T.; He, Y.P. Synthesis and anti-HIV-1 activity of S-dihydro(alkyloxy)benzyloxypyrimidine derivatives. Monatsh. Chem., 2008, 139, 967-974.
[22]
He, Y.P.; Long, J.; Zhang, S.S.; Li, C.; Lai, C.C.; Zhang, C.S.; Li, D.X.; Zhang, D.H.; Wang, H.; Cai, Q.Q.; Zheng, Y.T. Synthesis and biological evaluation of novel dihydro-aryl/alkylsulfanyl-cyclohexylmethyl-oxopyrimidines (S-DACOs) as high active anti-HIV agents. Bioorg. Med. Chem. Lett., 2011, 21, 694-697.
[23]
Yang, G.F.; Huang, X. Development of quantitative structure-activity relationships and its application in rational drug design. Curr. Pharm. Des., 2006, 12, 4601-4611.
[24]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967.
[25]
Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem., 1994, 37, 4130-4146.
[26]
Madhavan, T.; Chung, J.Y.; Kothandan, G.; Gadhe, C.G.; Cho, S.J. 3D-QSAR studies of JNK1 inhibitors utilizing various alignment methods. Chem. Biol. Drug Des., 2012, 79, 53-67.
[27]
Yan, W.L.; Guo, Q.; Li, C.; Ji, X.Y.; He, Y.P. 6-Cyclohexylmethyl-5-ethyl-2-[(2-oxo-2-phenylethyl)sulfanl]pyrimidin-4(3H)-one. Acta Crystallogr., 2011, 67, 534.
[28]
Clark, M.; Cramer, R.D.; Opdenbosch, N.V. Validation of the general purpose Tripos 5.2 force field. J. Comput. Chem., 1989, 10, 982-1012.
[29]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity: A rapid access to atomic charges. Tetrahedron, 1980, 36, 3219-3228.
[30]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[31]
Hopkins, A.L.; Ren, J.; Esnouf, R.M.; Willcox, B.E.; Jones, E.Y.; Ross, C.; Miyasaka, T.; Walker, R.T.; Tanaka, H.; Stammers, D.K.; Stuart, D.I. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J. Med. Chem., 1996, 39, 1589-1600.
[32]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28, 235-242.
[33]
Halgren, T.A. Merck molecular force field. I. basis, form, scope, parameterization and performance of MMFF94. J. Comput. Chem., 1996, 17, 490-519.
[34]
SZYBKI (2012) version 1.7.0, OpenEye Scientific Software, Inc., Fe. Santa, NM, USA. Available at: http://www.eyesopen.com/documentation (Accessed 2012)..
[35]
Murumkar, P.R.; Giridhar, R.; Yadav, M.R. 3D-Quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-A converting enzyme. Chem. Biol. Drug Des., 2008, 71, 363-373.
[36]
Vyas, V.K.; Patel, A.; Gupta, N.; Ghate, M. Design of novel anaplastic lymphoma kinase (ALK) inhibitors based on predictive 3D QSAR models using different alignment strategies. Med. Chem. Res., 2014, 23, 603-617.
[37]
Pourbasheer, E.; Amanlou, M. 3D-QSAR analysis of anti-cancer agents by CoMFA and CoMSIA. Med. Chem. Res., 2014, 23, 800-809.
[38]
OE ROCS (2008) version 2.3.1, OpenEye Scientific Software, Inc., Santa Fe, NM, USA. Available at: http://www.eyesopen.com/documentation (Accessed 2008)..
[39]
OMEGA (2008) version 2.3.1, OpenEye Scientific Software, Inc., Fe. Santa, NM, USA. Available at: http://www.eyesopen.com/documentation (Accessed 2008)..
[40]
Wold, S.; Geladi, P.; Esbensen, K.; Ohman, J. Multiway principal components and pls-analysis. J. Chemometr., 1987, 1, 41-56.
[41]
Buolamwini, J.K.; Haregewein, A. CoMFA and CoMSIA 3D QSAR and docking studies on conformationally-restrained cinnamoyl HIV-1 integrase inhibitors: Exploration of a binding mode at the active site. J. Med. Chem., 2002, 45, 841-852.
[42]
Hardik, G.B.; Paresh, K.P. Pharmacophore modeling, virtual screening and 3D-QSAR studies of 5-tetrahydroquinolinylidine aminoguanidine derivatives as sodium hydrogen exchanger inhibitors. Bioorg. Med. Chem. Lett., 2012, 22, 3758-3765.
[43]
Bush, B.L.; Nachbar, R.B. Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J. Comput. Aided Mol. Des., 1993, 7, 587-619.
[44]
Wold, S. Cross-validation estimation of the number of components in factor and principal components analysis. Technometrics, 1978, 24, 397-405.
[45]
Cramer, R.D.; Bunce, J.D.; Patterson, D.E.; Frank, I.E. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct-Act. Relat., 2006, 7, 18-25.
[46]
Shagufta, A.K.; Gautam, P.; Mohammad, I.S. CoMFA and CoMSIA 3D-QSAR analysis of diaryloxy-methano-phenanthrene derivatives as anti-tubercular agents. J. Mol. Model., 2006, 13, 99-109.
[47]
John, K.B.; Haregewein, A. CoMFA and CoMSIA 3D QSAR and docking studies on conformationally-restrained cinnamoyl HIV-1 Integrase Inhibitors: Exploration of a binding mode at the active site. J. Med. Chem., 2002, 45, 841-852.
[48]
Zhang, H.X.; Li, Y.; Wang, X.; Xiao, Z.T.; Wang, Y.H. Insight into the structural requirements of benzothiadiazine scaffold-based derivatives as hepatitis C virus NS5B polymerase inhibitors using 3D-QSAR, molecular docking and molecular dynamics. Curr. Med. Chem., 2011, 18, 4019-4028.
[49]
Zhang, X.J.; Lu, L.H.; Wang, R.R.; Wang, Y.P.; Luo, R.H.; Lai, C.C.; Yang, L.M.; He, Y.P.; Zheng, Y.T. DB-02, a C-6-Cyclohexylmethyl substituted pyrimidinone HIV-1 reverse transcriptase inhibitor with nanomolar activity, displays an improved sensitivity against K103N or Y181C than S-DABOs. PLoS One, 2013, 8, 1-11.
[50]
Golbraikh, A. Tropsha. A. Beware of q2! J. Mol. Graph. Model., 2002, 20, 269-276.
[51]
Mittal, R.R.; Harris, L.; McKinnon, R.A.; Sorich, M.J. Partial charge calculation method affects CoMFA QSAR prediction accuracy. J. Chem. Inf. Model., 2009, 49, 704-709.
[52]
Tsai, K.C.; Chen, Y.C.; Hsiao, N.W.; Wang, C.L.; Lin, C.L.; Lee, Y.C.; Li, M. Wang, B. A comparison of different electrostatic potentials on prediction accuracy in CoMFA and CoMSIA studies. Eur. J. Med. Chem., 2010, 45, 1544-1551.
[53]
Gadhe, C.G.; Kothandan, G.; Cho, S.J. Large variation in electrostatic contours upon addition of steric parameters and the effect of charge calculation schemes in CoMFA on mutagenicity of MX analogues. Mol. Simul., 2012, 38, 861-871.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy