[1]
Kappe CO. 4-Aryldihydropyrimidines via the Biginelli condensation: Aza-analogs of nifedipine-type calcium channel modulators. Molecules 1998; 3(1): 1-9.
[2]
Pankaj A, Rohit B, Jitender GC, et al. Triethylammonium acetate ionic liquid assisted one-pot synthesis of dihydropyrimidinones and evaluation of their antioxidant and antibacterial activitie. Arab J Chem 2017; 10(2): 206-14.
[3]
Gupta M, Paul S, Gupta R. General aspects of 12 basic principles of green chemistry with applications. Curr Sci 2010; 99(10): 1341-60.
[4]
Zachariah SM, Ramkumar M, George N, Ashif MS. Azetidinones: An overview. Int J Pharm Sci Rev Res 2015; 30(1): 211-8.
[5]
Zhu J, Bienayme H. Multicomponent reactionsChemical Int ed 2005; 39: 3168 .
[6]
The academic pursuit of screening. Nat Chem Biol 2007; 3: 433.
[7]
Kappe CO. The biginelli reaction: Development and application. Tetrahedron 1993; 49: 6937-63.
[8]
Dondoni A, Massi A. High efficient solvent free synthesis of Dihydropyrimidinones catalysed by Zinc oxide. Tetrahedron Lett 2001; 42: 7975-8.
[9]
Nicolaou KC, Hanko R, Hartwig W. Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials. Wiley-VCH: Weinheim 2002.
[10]
Phucho IT, Nongpiur A, Tumtin S, Nongrum R, Nongkhlaw RL. Recent progress in the chemistry of dihydropyrimidinones. J Chem 2009; 3: 662-76.
[11]
Kataki D, Chakraborty P, Sarmah P, Phukan P. Scalable synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent free condition. Ind J Chem Tech 2006; pp. 519-21.
[12]
Russowsky D, Canto RF, Sanches SA, et al. Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: Monastrol,oxo-monastrol and oxygenated analogues. Bioorg Chem 2006; 34: 173-82.
[13]
Bhatewara A, Jetti SR, Kadre T, Paliwal P, Jain S. Microwave-assisted synthesis and biological evaluation of dihydropyramidinone derivatives as anti-inflammatory, Antibacterial and antifungal agents. Int J Med Chem 2013; 1-5.
[14]
Suman LJ, Singhal S, Sain B. PEG-assisted solvent and catalyst free synthesis of 3, 4 -dihydropyrimidinones under mild teaction. Green Chem 2007; 9: 9740-1.
[15]
Akhaja TN, Raval JP. Bioactive dihydropyrimidines: An overview. Eur J Med Chem 2011; 46: 5573-9.
[16]
Kaan HYK, Ulaganathan V, Rath O, et al. Green synthetic approaches for biologically relaventdihydropyrimidinone. J Med Chem 2008; 16: 3291.
[17]
Chittethu AB, Asha J, Balasubramanian R, Saranya TS, Manakadan AA. Utility of isatinsemicarbazones in mammary carcinoma Cells-A proof of concept study. J Young Pharm 2017; 9: 218.
[18]
Thomas N, Zachariah SM, Ramani P. 4‐Aryl‐4H‐chromene‐3‐carbonitrile derivates: Synthesis and preliminary anti‐breast cancer studies. J Heterocycl Chem 2016; 53: 1778.
[19]
Wright CM, Chovatiya RJ, Jameson NE, et al. Pyrimidinone-peptoid hybrid molecules with distinct effects on molecular chaperone function and cell proliferation. Bioorg Med Chem 2008; 16: 3291.
[20]
Ibrahim DA, El-Metwally AM. N-(Cycloalkylamino)acyl-2-aminothiazole Inhibitors of Cyclin-Dependent Kinase 2. N-[5-[[[5-(1,1-Dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4- piperidinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent. Eur J Med Chem 2010; 45: 1158.
[21]
Patil AD, Kumar NV, Kokke WC, et al. Zinc perchlorate catalyzed one-pot synthesis of 3,4-dihydropyrimidinones under solvent-free condition. J Org Chem 1995; 60: 1182.
[22]
Kim J, Park C, Ok T, et al. A novel 3,4-dihydropyrimidin-2(1H)-one: HIV-1 replication inhibitors with improved metabolic stability. Bioorg Med Chem Lett 2012; 22: 2522.
[23]
Ji L, Chen FE, De Clercq E. Synthesis and anti-HIV-1 activity evaluation of 5-Alkyl-2-alkylthio-6-(arylcarbonyl or α-cyanoarylmethyl)-3, 4-dihydropyrimidin-4 (3 H)-ones as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. J Med Chem 2007; 50: 1778.
[24]
Lloyd J, Finlay HJ, Atwal K, et al. A review on biological activities of dihydropyrimidinones / thiones. Bioorg Med Chem Lett 2009; 19: 5469.
[25]
Zorkun IS, Sarac S, Celebib S, Erolb K. Synthesis of 4-aryl-3, 4-dihydropyrimidin-2 (1H)-thione derivatives as potential calcium channel blockers. Bioorg Med Chem 2006; 14: 8582.
[26]
Ozair A, Khan SA, Siddiqui N, Ahsan W, Verma SP, Gilani SJ. Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation. Eur J Med Chem 2010; 45: 5113.
[27]
Clark AS, Wang GZ, Viet AQ, et al. Potent, selective and orally bioavailable dihydropyrimidine inhibitors of Rho kinase (ROCK1) as potential therapeutic agents for cardiovascular diseases. J Med Chem 2008; 51: 6631.
[28]
Singh BK, Mishra M, Saxena N, et al. Synthesis of 2-sulfanyl-6-methyl-1, 4-dihydropyrimidines as a new class of antifilarial agents. Eur J Med Chem 2008; 43: 2717-23.
[29]
Atwal KS, Swanson BN, Unger SE, et al. Reilly OX. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J Med Chem 1991; 34: 806-11.
[30]
Rovnyak GC, Kimball SD, Beyer B, et al. Moreland. The generation of dihydropyrimidine libraries utilizing biginelli multicomponent chemistry. J Med Chem 1995; 38: 119-29.
[31]
Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999; 286(5441): 971-4.
[32]
Maliga T, Kapoor TJ. Mitchison. Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem Biol 2002; 9: 989-96.