[1]
Berggard, T.; Linse, S.; James, P. Methods for the detection and analysis of protein protein interactions. Proteomics, 2007, 7, 2833-2842.
[2]
De-Las-Rivas, J.; Fontanillo, C. Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLOS Comput. Biol., 2010, 6(6)e1000807
[3]
Westermarck, J.; Ivaska, J.; Corthals, G.L. Identification of protein interactions involved in cellular signaling. Mol. Cell. Proteomics, 2013, 12, 1752-1763.
[4]
Sukenik, S.; Ren, P.; Gruebele, M. Weak protein-protein interactions in live cells are quantified by cell-volume modulation. Proc. Natl. Acad. Sci. , 2017, 114(26), 6776-6781.
[5]
Feng, Y.; Wang, Q.; Wang, T. Drug target protein-protein interaction networks: A systematic perspective. BioMed Res. Int., 2017, 20171289259
[6]
Stumpf, M.P.; Thorne, T.; De-Silva, E.; Stewart, R.; An, H.J.; Lappe, M.; Wiuf, C. Estimating the size of the human interactome. Proc. Natl. Acad. Sci. , 2008, 105, 6959-6964.
[7]
Keskin, O.; Tuncbag, N.; Gursoy, A. Predicting protein–protein interactions from the molecular to the proteome level. Chem. Rev., 2016, 116(8), 4884-4909.
[8]
Li, X.H.; Chavali, P.L.; Babu, M.M. Capturing dynamic protein interactions: A method based on heat denaturation reveals how proteins interact in different cells. Science, 2018, 359(6380), 1105-1106.
[9]
Berridge, M.J. Cell Signalling Biology. Module 6, Spatial and Temporal Aspects of Signalling; Portland Press Ltd.: London, 2008, pp. 50-57.
[10]
Morlacchi, P.; Robertson, F.M.; Klostergaard, J.; McMurray, J.S. Targeting SH2 domains in breast cancer. Future Med. Chem., 2014, 6, 1909-1926.
[11]
Smithgall, T.E. SH2 and SH3 domains: Potential targets for anti-cancer drug design. J. Pharmacol. Toxicol. Methods, 1995, 34, 125-132.
[12]
Matthews, J.M.; Lester, K.; Joseph, S.; David, J.C. LIM-domain-only proteins in cancer. Nat. Rev. Cancer, 2013, 13, 111-122.
[13]
Lo, S.H. Tensin. Int. J. Biochem. Cell Biol., 2004, 36, 31-34.
[14]
Yaffe, M. Phosphotyrosine-binding domains in signal transduction. Nat. Rev. Mol. Cell Biol., 2002, 3, 177-186.
[15]
Mercurio, F.A.; Leone, M. The sam domain of EphA2 receptor and its relevance to cancer: A novel challenge for drug discovery? Curr. Med. Chem., 2016, 23, 4718-4734.
[16]
Facciuto, F.; Cavatorta, A.L.; Valdano, M.B.; Marziali, F.; Gardiol, D. Differential expression of PDZ domain proteins in human diseases-challenging topics and novel issues. FEBS J., 2012, 279, 3538-3548.
[17]
Meuillet, E.; Lemos, R.; Moses, S.; Zuohe, S.; Ihle, N.; Zhang, S.; Du-Cuny, L.; Mash, E.; Powis, G. Novel small molecule inhibitors targeting the pleckstrin homology (PH) domain of Akt. Cancer Research 100th AACR Annual Meeting, 2009, pp. 18-22.
[18]
Rainero, E.; Caswell, P.T.; Muller, P.A.; Grindlay, J.; McCaffrey, M.W.; Zhang, Q.; Wakelam, M.J.; Vousden, K.H.; Graziani, A.; Norman, J.C. Diacylglycerol kinase α controls RCP-dependent integrin trafficking to promote invasive migration. J. Cell Biol., 2012, 196, 277-295.
[19]
Caswell, P.T.; Spence, H.J.; Parsons, M.; White, D.P.; Clark, K.; Cheng, K.W.; Mills, G.B.; Humphries, M.J.; Messent, A.J.; Anderson, K.I.; McCaffrey, M.W. Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell, 2007, 13, 496-510.
[20]
Kerber, M.L.; Jacobs, D.T.; Campagnola, L.; Dunn, B.D.; Yin, T.; Sousa, A.D.; Quintero, O.A.; Cheney, R.E. A novel form of motility in filopodia revealed by imaging myosin-X at the single-molecule level. Curr. Biol., 2009, 19, 967-973.
[21]
Feng, S.; Knodler, A.; Ren, J.; Zhang, J.; Zhang, X.; Hong, Y.; Huang, S.; Peranen, J.; Guo, W.A. Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis. J. Biol. Chem., 2012, 287, 15602-15609.
[22]
Beaumont, K.A.; Hamilton, N.A.; Moores, M.T.; Brown, D.L.; Ohbayashi, N.; Cairncross, O.; Cook, A.L.; Smith, A.G.; Misaki, R.; Fukuda, M.; Taguchi, T. The recycling endosome protein Rab17 regulates melanocytic filopodia formation and melanosome trafficking. Traffic, 2011, 12, 627-643.
[23]
Tzeng, H.T.; Wang, Y.C. Rab-mediated vesicle trafficking in cancer. J. Biomed. Sci., 2016, 23(1), 70.
[24]
Mai, A.; Veltel, S.; Pellinen, T.; Padzik, A.; Coffey, E.; Marjomäki, V.; Ivaska, J. Competitive binding of Rab21 and p120 RasGAP to integrins regulates receptor traffic and migration. J. Cell Biol., 2011, 194, 291-306.
[25]
Barbarin, A.; Frade, R. Procathepsin L secretion, which triggers tumor progression, is regulated by Rab4A in human melanoma cells. Biochem. J., 2011, 437, 97-107.
[26]
Goldenring, J.R. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat. Rev. Cancer, 2013, 13, 813-820.
[27]
Guda, P.; Chittur, S.V.; Guda, C. Comparative analysis of protein-protein interactions in cancer-associated genes. Genomics Proteomics & Bioinformatics, 2009, 7, 25-36.
[28]
Horwitz, K.B.; Jackson, T.A.; Bain, D.L.; Richer, J.K.; Takimoto, G.S.; Tung, L. Nuclear receptor coactivators and corepressors. Mol. Endocrinol., 1996, 10, 1167-1177.
[29]
Angeles, C. Tecalco-Cruz, Ríos-López D.G.; Vázquez-Victorio
G.; Rosales-Alvarez R.; Macías-Silva M. Transcriptional cofactors
Ski and SnoN are major regulators of the TGF-β/Smad signaling
pathway in health and disease. Signal Trans. Target. Ther, 2018, 3(15)
[30]
Geffroy, N.; Guédin, A.; Dacquet, C.; Lefebvre, P. Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein kinases. Mol. Cell. Endocrinol., 2005, 237, 11-23.
[31]
Ballare, C.; Uhrig, M.; Bechtold, T.; Sancho, E.; Di, D.M.; Migliaccio, A.; Auricchio, F.; Beato, M. Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Src/Erk pathway in mammalian cells. Mol. Cell. Biol., 2003, 23, 1994-2008.
[32]
Yulia, L.; Konhilas, J.P. The complex nature of estrogen signaling in breast cancer: enemy or ally? Biosci. Rep., 2016, 36(3)e0035
[33]
Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Kempf, C.R.; Long, J.; Laidler, P.; Mijatovic, S.; Maksimovic-Ivanic, D.; Stivala, F.; Mazzarino, M.C.; Donia, M. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY), 2011, 3, 192-222.
[34]
Serra, V.; Scaltriti, M.; Prudkin, L.; Eichhorn, P.J.; Ibrahim, Y.H.; Chandarlapaty, S.; Markman, B.; Rodriguez, O.; Guzman, M.; Rodriguez, S.; Gili, M. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene, 2011, 30, 2547-2557.
[35]
Kampen, K.R. Membrane proteins: The key players of a cancer cell. J. Membr. Biol., 2011, 242, 69-74.
[36]
Boer, J.M.; Huber, W.K.; Sültmann, H.; Wilmer, F.; Von-Heydebreck, A.; Haas, S.; Korn, B.; Gunawan, B.; Vente, A.; Füzesi, L.; Vingron, M. Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res., 2001, 11, 1861-1870.
[37]
Siemann, D.W.; Chaplin, D.J.; Horsman, M.R. Vascular-targeting therapies for treatment of malignant disease. Cancer, 2004, 100, 2491-2499.
[38]
Lee, S.H.; Jeong, D.; Han, Y.K.; Baek, M.J. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res., 2015, 89, 1-8.
[39]
Bergers, G.; Javaherian, K.; Lo, K.M.; Folkman, J.; Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 1999, 284, 808-812.
[40]
Los, M.; Roodhart, J.M.L.; Voest, E.E. Target practice: Lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. Oncology, 2007, 12, 443-450.
[41]
Al‐Husein, B.; Abdalla, M.; Trepte, M.; DeRemer, D.L.; Somanath, P.R. Antiangiogenic therapy for cancer: An update. Pharmacotherapy:
J. Human Pharmacol. Drug Ther, 2012, 32, 095-111.
[42]
Feller, S.M.; Lewitzky, M. Potential disease targets for drugs that disrupt protein-protein interactions of Grb2 and Crk family adaptors. Curr. Pharm. Des., 2006, 12, 529-548.
[43]
Furet, P.; Gay, B.; Caravatti, G.; García-Echeverria, C.; Rahuel, J.; Schoepfer, J.; Fretz, H. Structure-based design and synthesis of high affinity tripeptide ligands of the Grb2-SH2 domain. J. Med. Chem., 1998, 41, 3442-3449.
[44]
Gao, Y.; Luo, J.; Yao, Z.J.; Guo, R.; Zou, H.; Kelley, J.; Voigt, J.H.; Yang, D.; Burke, T.R. Inhibition of Grb2 SH2 domain binding by non-phosphate-containing ligands. 2. 4-(2-Malonyl) phenylalanine as a potent phosphotyrosyl mimetic. J. Med. Chem., 2000, 43, 911-920.
[45]
Jesus-Perez-de-Vega, M.; Martin-Martinez, M.; Gonzalez-Muniz, R. Modulation of protein-protein interactions by stabilizing/mimicking protein secondary structure elements. Curr. Top. Med. Chem., 2007, 7, 33-62.
[46]
Sosman, J.A.; Puzanov, I.; Atkins, M.B. Opportunities and obstacles to combination targeted therapy in renal cell cancer. Clin. Cancer Res., 2007, 13, 764s-769s.
[47]
Kampen, K.R. Membrane proteins: The key players of a cancer cell. J. Membr. Biol., 2011, 242, 69-74.
[48]
Maeng, J.H.; Lee, D.H.; Jung, K.H.; Bae, Y.H.; Park, I.S.; Jeong, S.; Jeon, Y.S.; Shim, C.K.; Kim, W.; Kim, J.; Lee, J. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials, 2010, 31, 4995-5006.
[49]
Milane, L.; Duan, Z.; Amiji, M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol. Pharm., 2011, 8, 185-203.
[50]
Lee, T.I.; Young, R.A. Transcriptional regulation and its misregulation in disease. Cell, 2013, 152, 1237-1251.
[51]
Matthews, C.P.; Colburn, N.H.; Young, M.R. AP-1 a target for cancer prevention. Curr. Cancer Drug Targets, 2007, 7, 317-324.
[52]
Darnell, J.E. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer, 2002, 2, 740-749.
[53]
Lee, E.Y.; Muller, W.J. Oncogenes and tumor suppressor genes. Cold Spring Harb. Perspect. Biol., 2010, 2a003236
[54]
Bretones, G.; Delgado, M.D.; León, J. Myc and cell cycle control. Biochimica et Biophysica Acta (BBA)-. Gene Regulatory Mech., 2015, 1849, 506-516.
[55]
Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell, 2013, 153, 17-37.
[56]
Ouyang, X.; Jessen, W.J.; Al-Ahmadie, H.; Serio, A.M.; Lin, Y.; Shih, W.J.; Reuter, V.E.; Scardino, P.T.; Shen, M.M.; Aronow, B.J. Vickers. A.J. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res., 2008, 68, 2132-2144.
[57]
Semenza, G.L. Involvement of hypoxia-inducible factor 1 in human cancer. Intern. Med., 2002, 41, 79-83.
[58]
Van-Delft, M.F.; Huang, D.C.S. How the Bcl-2 family of proteins interacts to regulate apoptosis. Cell Res., 2006, 16, 203-213.
[59]
Sattler, M.; Liang, H.; Nettesheim, D.; Meadows, R.P.; Harlan, J.E.; Eberstadt, M. Yoon.; H.S.; Shuker, S.B.; Chang, B.S.; Minn, A.J.; Thompson, C.B. Structure of Bcl-x L-Bak peptide complex: recognition between regulators of apoptosis. Science, 1997, 275, 983-986.
[60]
Fesik, S.W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer, 2005, 5, 876-885.
[61]
Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435, 677-681.
[62]
Barker, N.; Clevers, H. Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov., 2006, 5, 997-1014.
[63]
Fujii, N.; You, L.; Xu, Z.; Uematsu, K.; Shan, J.; He, B.; Mikami, I.; Edmondson, L.R.; Neale, G.; Zheng, J.; Guy, R.K. An antagonist of dishevelled protein-protein interaction suppresses β-catenin-dependent tumor cell growth. Cancer Res., 2007, 67, 573-579.
[64]
White, A.W.; Westwell, A.D.; Brahemi, G. Protein protein interactions as targets for small-molecule therapeutics in cancer. Expert Rev. Mol. Med., 2008, 10, e8.
[65]
Emami, K.H.; Nguyen, C.; Ma, H.; Kim, D.H.; Jeong, K.W.; Eguchi, M.; Moon, R.T.; Teo, J.L.; Oh, S.W.; Kim, H.Y.; Moon, S.H. A small molecule inhibitor of β-catenin/cyclic AMP response element-binding protein transcription. Proc. Natl. Acad. Sci. , 2004, 101, 12682-12687.
[66]
Walker, K.; Olson, M.F. Targeting Ras and Rho GTPases as opportunities for cancer therapeutics. Curr. Opin. Genet. Dev., 2005, 15, 62-68.
[67]
Warne, P.H.; Viciana, P.R.; Downward, J. Direct interaction of Ras and the amino terminal region of Raf-1 in-vitro. Nature, 1993, 364, 352-355.
[68]
Yang, S.; Liu, G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. ([)Review). Oncol. Lett., 2017, 13, 1041-1047.
[69]
Wecksler, A.T.; Hwang, S.H.; Liu, J.Y.; Wettersten, H.I.; Morisseau, C.; Wu, J.; Weiss, R.H.; Hammock, B.D. Biological evaluation of a novel sorafenib analogue, t-CUPM. Cancer Chemother. Pharmacol., 2015, 75, 161-171.
[70]
Fucile, C.; Marenco, S.; Bazzica, M.; Zuccoli, M.L.; Lantieri, F.; Robbiano, L.; Marini, V.; Di-Gion, P.; Pieri, G.; Stura, P. Martelli. A Measurement of sorafenib plasma concentration by high-performance liquid chromatography in patients with advanced hepatocellular carcinoma: Is it useful the application in clinical practice? A pilot study. Med. Oncol., 2015, 32, 335.
[71]
Schimmer, A.D. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res., 2004, 64, 7183-7190.
[72]
Deveraux, Q.L.; Roy, N.; Stennicke, H.R.; Van-Arsdale, T.; Zhou, Q.; Srinivasula, S.M.; Alnemri, E.S.; Salvesen, G.S.; Reed, J.C. IAPs block apoptotic events induced by caspase‐8 and cytochrome c by direct inhibition of distinct caspases. EMBO J., 1998, 17, 2215-2223.
[73]
Oost, T.K.; Sun, C.; Armstrong, R.C.; Al-Assaad, A.S.; Betz, S.F.; Deckwerth, T.L.; Ding, H.; Elmore, S.W.; Meadows, R.P.; Olejniczak, E.T. Oleksijew. A Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J. Med. Chem., 2004, 47, 4417-4426.
[74]
Stein, A.; Aloy, P. Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures. PLOS Comput. Biol., 2010, 6(5)e1000789
[75]
Verdine, G.L.; Walensky, L.D. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin. Cancer Res., 2007, 13, 7264-7270.
[76]
Parrondo, R.; De-las-Pozas, A.; Reiner, T.; Perez-Stable, C. ABT-737, a small molecule Bcl-2/Bcl-xL antagonist, increases anti-mitotic-mediated apoptosis in human prostate cancer cells. Peer J., 2013, 1e144
[77]
Rayburn, E.; Zhang, R.; He, J.; Wang, H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr. Cancer Drug Targets, 2005, 5, 27-41.
[78]
Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D.; Li, X.; Zhao, T.; Zou, P.; Sun, D.; Wang, S. A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J. Med. Chem., 2013, 56, 5553-5561.
[79]
Werner, L.; Huang, S.; Armstrong, A.; Francis, D.; Osgood, T.; Canon, J.; Harari, P.M. Abstract 2610: AMG 232, a small molecular inhibitor of MDM2 augments radiation response in human tumors harboring wild-type p53. Cancer Res., 2014, 74, 2610-2610.
[80]
Bernard, D.; Zhao, Y.; Wang, S. AM-8553: A novel MDM2 inhibitor with a promising outlook for potential clinical development. J. Med. Chem., 2012, 55, 4934-4935.
[81]
Galatin, P.S.; Abraham, D.J. A nonpeptidic sulfonamide inhibits the p53 - mdm2 interaction and activates p53-dependent transcription in mdm2 over expressing cells. J. Med. Chem., 2004, 47, 4163-4165.
[82]
Khoo, K.H.; Hoe, K.K.; Verma, C.S.; Lane, D.P. Drugging the p53 pathway: Understanding the route to clinical efficacy. Nat. Rev. Drug Discov., 2014, 13, 217-236.
[83]
Youle, R.J.; Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 2008, 9, 47-59.
[84]
Cory, S.; Adams, J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002, 2, 647-656.
[85]
Sattler, M. Liang. H.; Nettesheim, D.; Meadows, R.P.; Harlan, J.E.; Eberstadt, M.; Yoon, H.S.; Shuker, S.B.; Chang, B.S.; Minn, A.J.; Thompson, C.B. Structure of Bcl-x L-Bak peptide complex: recognition between regulators of apoptosis. Science, 1997, 275, 983-986.
[86]
Corbi-Verge, C.; Kim, P.M. Motif mediated protein-protein interactions as drug targets. Cell Commun. Signal., 2016, 14, 8.
[87]
Parrondo, R.; De-las-Pozas, A.; Reiner, T.; Perez-Stable, C. ABT-737, a small molecule Bcl-2/Bcl-xL antagonist, increases antimitotic-mediated apoptosis in human prostate cancer cells. Peer J, 2013, 1e144
[88]
Leisle, L.; Valiyaveetil, F.; Mehl, R.A.; Ahern, C.A. Incorporation of non-canonical amino acids. Adv. Exp. Med. Biol., 2015, 869, 119-151.
[89]
Hamase, K. Recent advances on D-amino acid research. J. Pharmaceut. Biomed. Anal., 2015, 116, 1.
[90]
Spokoyny, A.M.; Zou, Y.; Ling, J.J.; Yu, H. Lin.; Y.S.; Pentelute, B.L. A perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. J. Am. Chem. Soc., 2013, 135, 5946-5949.
[91]
Schafmeister, C.E.; Po, J.; Verdine, G.L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc., 2000, 122, 5891-5892.
[92]
Zhang, C.; Dai, P.; Spokoyny, A.M.; Pentelute, B.L. Enzyme-catalyzed macrocyclization of long unprotected peptides. Org. Lett., 2014, 16, 3652-3655.
[93]
Shi, Y.; Wu, G.; Chai, J.; Suber, T.L.; Wu, J.W.; Du, C.; Wang, X. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature, 2000, 408, 1008-1012.
[94]
Nikolovska-Coleska, Z.; Meagher, J.L.; Jiang, S.; Yang, C.Y.; Qiu, S.; Roller, P.P.; Stuckey, J.A.; Wang, S. Interaction of a cyclic, bivalent Smac mimetic with the x-linked inhibitor of apoptosis protein. Biochemistry, 2008, 16, 9811-9824.
[95]
Flygare, J.A.; Beresini, M.; Budha, N.; Chan, H.; Chan, I.T.; Cheeti, S.; Cohen, F.; Deshayes, K.; Doerner, K.; Eckhardt, S.G.; Elliott, L.O. Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J. Med. Chem., 2012, 55, 4101-4113.
[96]
Wang, S.; Bai, L.; Lu, J.; Liu, L.; Yang, C.Y. Targeting inhibitors of apoptosis proteins (IAPs) for new breast cancer therapeutics. J. Mammary Gland Biol. Neoplasia, 2012, 17, 217-228.
[97]
Blackwell, H.E.; Grubbs, R.H. Highly efficient synthesis of covalently cross‐linked peptide helices by ring‐closing metathesis. Angew. Chem. Int. Ed., 1998, 37, 3281-3284.
[98]
Walensky, L.D.; Bird, G.H. Hydrocarbon-stapled peptides: Principles, practice, and progress. J. Med. Chem., 2014, 57, 6275-6288.
[99]
Chang, Y.S.; Graves, B.; Guerlavais, V.; Tovar, C.; Packman, K.; To, K.H.; Olson, K.A.; Kesavan, K.; Gangurde, P.; Mukherjee, A.; Baker, T. Stapled α-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. , 2013, 110, 3445-E3454.
[100]
Zinzalla, G.; Thurston, D.E. Targeting protein-protein interactions for therapeutic intervention: a challenge for the future. Future Med. Chem., 2009, 1, 65-93.
[101]
Dandekar, T.; Snel, B.; Huynen, M.; Bork, P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci., 1998, 23, 324-328.
[102]
Overbeek, R.; Fonstein, M.; D’Souza, M.; Pusch, G.D.; Maltsev, N. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. , 1999, 96, 2896-2901.
[103]
Enright, A.J.; Iliopoulos, I.; Kyrpides, N.C.; Ouzounis, C.A. Protein interaction maps for complete genomes based on gene fusion events. Nature, 1999, 402, 86-90.
[104]
Marcotte, E.M.; Pellegrini, M.; Ng, H.L.; Rice, D.W. Yeates, Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science, 1999, 285, 751-753.
[105]
Ouzounis, C.; Kyrpides, N. The emergence of major cellular processes in evolution. FEBS Lett., 1996, 390, 119-123.
[106]
Pellegrini, M.; Marcotte, E.M.; Thompson, M.J.; Eisenberg, D.; Yeates, T.O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. , 1999, 96, 4285-4288.
[107]
Najafabadi, H.S.; Salavati, R. Sequence-based prediction of protein-protein interactions by means of codon usage. Genome Biol., 2008, 9, R87.
[108]
Bock, J.R.; Gough, D.A. Whole-proteome interaction mining. Bioinformatics, 2003, 19, 125-134.
[109]
Aziz, M.M.; Maleki, M.; Rueda, L.; Raza, M.; Banerjee, S. Prediction of biological protein-protein interactions using atom-type and amino acid properties. Proteomics, 2011, 11, 3802-3810.
[110]
Pitre, S.; Dehne, F.; Chan, A.; Cheetham, J.; Duong, A.; Emili, A.; Gebbia, M.; Greenblatt, J.; Jessulat, M.; Krogan, N.; Luo, X. Golshani. A PIPE: A protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs. BMC Bioinformatics, 2006, 7, 365.
[111]
Guo, Y.; Yu, L.; Wen, Z.; Li, M. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res., 2008, 36, 3025-3030.
[112]
Rajasekaran, S.; Balla, S.; Gradie, P.; Gryk, M.R.; Kadaveru, K.; Kundeti, V.; Maciejewski, M.W.; Mi, T.; Rubino, N.; Vyas, J.; Schiller, M.R. Minimotif miner 2nd release: A database and web system for motif search. Nucleic Acids Res., 2009, 37, D185-D190.
[113]
Knisley, T.J.; Ariyasena, T.C.; Sajavaara, T.; Saly, M.J.; Winter, C.H. Low temperature growth of high purity, low resistivity copper films by atomic layer deposition. Chem. Mater., 2011, 23, 4417-4419.
[114]
Harris, B.Z.; Lim, W.A. Mechanisms and role of PDZ domains in signalling complex assembly. J. Cell Sci., 2001, 114, 3219-3231.
[115]
Hue, M.; Riffle, M.; Vert, J.P.; Noble, W.S. Large-scale prediction of protein-protein interactions from structures. BMC Bioinformatics, 2010, 11, 144.
[116]
Shoemaker, B.A.; Zhang, D.; Tyagi, M.; Thangudu, R.R.; Fong, J.H.; Marchler-Bauer, A.; Bryant, S.H.; Madej, T.; Panchenko, A.R. IBIS (Inferred Biomolecular Interaction Server) reports, predicts and integrates multiple types of conserved interactions for proteins. Nucleic Acids Res., 2011, 40, D834-D840.
[117]
Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol., 2007, 372, 774-797.
[118]
Gibrat, J.F.; Madej, T.; Bryant, S.H. Surprising similarities in structure comparison. Curr. Opin. Struct. Biol., 1996, 6, 377-385.
[119]
Lu, L.; Lu, H.; Skolnick, J. Multiprospector: An algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins, 2002, 49, 350-364.
[120]
Rodriguez-Soca, Y.; Munteanu, C.R.; Dorado, J.; Rabunal, J.; Pazos, A.; González-Díaz, H. Plasmod-PPI: A web-server predicting complex biopolymer targets in plasmodium with entropy measures of protein-protein interactions. Polymer , 2010, 51, 264-273.
[121]
Deng, M.; Mehta, S.; Sun, F.; Chen, T. Inferring domain-domain interactions from protein-protein interactions. Genome Res., 2002, 12, 1540-1548.
[122]
Punta, M.; Coggill, P.C.; Eberhardt, R.Y.; Mistry, J.; Tate, J.; Boursnell, C.; Pang, N.; Forslund, K.; Ceric, G.; Clements, J.; Heger, A.; Holm, L.; Sonnhammer, E.L.L.; Eddy, S.R.; Bateman, A.; Finn, R.D. The Pfam protein families database. Nucleic Acid Res., 2012, 40, D290-D301.
[123]
Pagel, P.; Kovac, S.; Oesterheld, M.; Brauner, B.; Dunger-Kaltenbach, I.; Frishman, G.; Montrone, C.; Mark, P.; Stumpflen, V.; Mewes, H.W.; Ruepp, A.; Frishman, D. The MIPS mammalian protein-protein interaction database. Bioinformatics, 2005, 21, 832-834.
[124]
Huang, C.; Morcos, F.; Kanaan, S.P.; Wuchty, S.; Chen, D.Z.; Izaguirre, J.A. Predicting protein-protein interactions from protein domains using a set cover approach. TCBB, 2007, 4, 78-87.
[125]
Chen, X.W.; Liu, M. Prediction of protein-protein interactions using random decision forest framework. Bioinformatics, 2005, 21, 4394-4400.
[126]
Wang, R.S.; Wang, Y.; Wu, L.Y.; Zhang, X.S.; Chen, L. Analysis on multi-domain cooperation for predicting protein-protein interactions. BMC Bioinformatics, 2007, 8, 391.
[127]
Conte, L.L.; Chothia, C.; Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol., 1999, 285, 2177-2198.
[128]
Rudolph, J. Inhibiting transient protein protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nat. Rev. Cancer, 2007, 7, 202-211.
[129]
DeLano, W.L. Unraveling hot spots in binding interfaces: Progress and challenges. Curr. Opin. Struct. Biol., 2002, 12, 14-20.
[130]
Sidhu, S.S.; Fairbrother, W.J.; Deshayes, K. Exploring protein-protein interactions with phage display. ChemBioChem, 2003, 4, 14-25.
[131]
Bogan, A.A.; Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol., 1998, 280, 1-9.