[1]
Zhu, T.; Row, K.H. Box-behnken design for optimizing extraction of luteolin from celery leaves. J. Liq. Chrom. Rel. Techno., 2011, 34(12), 1036-1049.
[2]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. Sci. World J., 2013, 2013, 162750.
[3]
Kim, J.S.; Kwon, C.S.; Son, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem., 2000, 64(11), 2458-2461.
[4]
Abidin, L.; Mujeeb, M.; Imam, S.S.; Aqil, M.; Khurana, D. Enhanced transdermal delivery of luteolin via nonionic surfactant-based vesicle: quality evaluation and anti-arthritic assessment. Drug Deliv., 2015, 21, 1-6.
[5]
Maruyama, S.A.; Palombini, S.V.; Claus, T.; Carbonera, F.; Montanher, P.F.; de Souza, N.E.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Application of box-behnken design to the study of fatty acids and antioxidant activity from enriched white bread. J. Braz. Chem. Soc., 2013, 24(9), 1520-1529.
[6]
Cotelle, N.; Bernier, J.L.; Catteau, J.P.; Pommery, J.; Wallet, J.C.; Gaydou, E.M. Antioxidant properties of hydroxy-flavones. Free Radic. Biol. Med., 1996, 20(1), 35-43.
[7]
Fotsis, T.; Pepper, M.S.; Aktas, E.; Breit, S.; Rasku, S.; Adlercreutz, H.; Wähälä, K.; Montesano, R.; Schweigerer, L. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res., 1997, 57(14), 2916-2921.
[8]
Hiremath, S.P.; Badami, S.; Hunasagatta, S.K.; Patil, S.B. Antifertility and hormonal properties of flavones of Striga orobanchioides. Eur. J. Pharmacol., 2000, 391(1-2), 193-197.
[9]
Kim, J.S.; Kwon, C.S.; Son, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem., 2000, 64(11), 2458-2461.
[10]
Simoes, C.M.; Schenkel, E.P.; Bauer, L.; Langeloh, A. Pharmacological investigation on Achyrocline satureioides (Lam.) D.C. Compositae. Ethanopharmacol., 1988, 22(3), 28-293.
[11]
Wang, J.; Zhang, J.; Zhao, B.; Wang, X.; Wu, Y.; Yao, J. A comparison study on microwave-assisted extraction of Potentilla anserine L. polysaccharides with conventional methods: Molecular weight and anti-oxidant activities evaluation. Carbohydr. Polym., 2010, 80, 84-93.
[12]
Alam, M.S.; Damanhouri, Z.A.; Ahmad, A.; Abidin, L.; Amir, M.; Aqil, M.; Khan, S.A.; Mujeeb, M. Development of response surface methodology for optimization of extraction parameters and quantitative estimation of embelin from Embelia ribes Burm by high performance liquid chromatography. Pharmacogn. Mag., 2015, 11(1)(Suppl. 1), S166-S172.
[13]
Bulduk, I.; Gezer, B.; Cengiz, M. Optimization of ultrasound-assisted extraction of morphine from capsules of Papaver somniferum by response surface methodology. Int. J. Anal. Chem., 2015, 2015, 796349.
[14]
Ghasemzadeh, A.; Jaafar, H.Z.; Karimi, E.; Rahmat, A. Optimization of ultrasound-assisted extraction of flavonoid compounds and their pharmaceutical activity from curry leaf (Murraya koenigii L.) using response surface methodology. BMC Complement. Altern. Med., 2014, 14, 318.
[15]
Siddiqui, N.; Aeri, V. Optimization of betulinic acid extraction from Tecomella undulate bark using a box-behnken design and its densitometric validation. Molecules, 2016, 21(4), 393.
[16]
Cristea, D.; Bareau, I.; Gerard, V. Identification and quantitative HPLC analysis of the main flavonoids present in weld (Reseda luteola L.). Dyes Pigm., 2003, 57, 267-272.
[17]
Nath, A.; Chattopadhyay, P.K. Optimization of oven toasting for improving crispness and other quality attributes of ready to eat potato soy snack using response surface methodology. J. Food Eng., 2007, 80, 1282-1292.
[18]
Shailajan, S.; Yeragi, M. Optimization of microwave assisted extraction of luteolin from leaves of Vitex negundo Linn and its comparison with conventional extraction methods. Int. J. Pharma. Res. Dev., 2011, 3(5), 128-134.