Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Medicinal Importance of Azo and Hippuric Acid Derivatives

Author(s): Tehreem Tahir, Muhammad Ashfaq*, Humna Asghar, Mirza I. Shahzad, Rukhsana Tabassum and Areeba Ashfaq

Volume 19, Issue 9, 2019

Page: [708 - 719] Pages: 12

DOI: 10.2174/1389557518666180727162018

Price: $65

conference banner
Abstract

In this review, specific therapeutic and medicinal advantages including antiviral, antibacterial, antifungal and antitumor, strategies for drug designing, structure-activity relationship, advances in the syntheses of azo and hippuric acid derivatives of more than 50 compounds have been discussed since 2009-2018. It is found that phenyl-diazenyl azo derivatives and pyridinyl substituted hippuric acid derivatives showed promising antiretroviral potential. The incorporation of azo functionality to the respective quinolones and coumarin moieties and the insertion of thiocarbazone to hippuric acid displayed immense antibacterial activities. While, azo and hippuric acid derivatives of triazole and phenyl species gave maximum fungicidal as well as cytotoxic activities.

Keywords: Drug targets, azo dyes, hippuric acid derivatives, synthetic chemistry, antiviral drugs, anti-microbial agents.

Graphical Abstract

[1]
Hahon, N. Inhibition of viral interferon induction in mammalian cell cultures by azo dyes and derivatives activated with rat liver S9 fraction. Environ. Res., 1985, 37(1), 228-238.
[2]
Martínez, A.; Esteban, A.I.; Herrero, A.; Ochoa, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Clercq, E.D. Imidazothiadiazine dioxides: Synthesis and antiviral activity. Bioorg. Med. Chem., 1999, 7(8), 1617-1623.
[3]
Song, W-H.; Liu, M-M.; Zhong, D-W.; Zhu, Y-L.; Bosscher, M.; Zhou, L.; Ye, D-Y.; Yuan, Z-H. Tetrazole and triazole as bioisosteres of carboxylic acid: Discovery of diketo tetrazoles and diketo triazoles as anti-HCV agents. Bioorg. Med. Chem. Lett., 2013, 23(16), 4528-4531.
[4]
Shridhar, A.H.; Keshavayya, J.; Peethambar, S.K.; Joy Hoskeri, H. Synthesis and biological activities of Bis alkyl 1,3,4-oxadiazole incorporated azo dye derivatives. Arab. J. Chem., 2016, 9(2), 1643-1648.
[5]
Khalil, N.S.A.M. A facile synthesis, structure, and antimicrobial evaluation of novel 4-arylhydrazono-5-trifluoromethyl-2,4-dihydropyrazol-3-ones, their N- and N,O-bis-β-d-glucosides. Carbohydr. Res., 2009, 344(13), 1654-1659.
[6]
Yu, Z.; Shi, G.; Sun, Q.; Jin, H.; Teng, Y.; Tao, K.; Zhou, G.; Liu, W.; Wen, F.; Hou, T. Design, synthesis and in vitro antibacterial/ antifungal evaluation of novel 1-ethyl-6-fluoro-1, 4-dihydro-4-oxo-7 (1-piperazinyl) quinoline-3-carboxylic acid derivatives. Eur. J. Med. Chem., 2009, 44(11), 4726-4733.
[7]
Kumar, A.; Sharma, P.; Kumari, P.; Lal Kalal, B. Exploration of antimicrobial and antioxidant potential of newly synthesized 2,3-disubstituted quinazoline-4(3H)-ones. Bioorg. Med. Chem. Lett., 2011, 21(14), 4353-4357.
[8]
Gaber, M.; El-Sayed, Y.S.; El-Baradie, K.Y.; Fahmy, R.M. Complex formation, thermal behavior and stability competition between Cu(II) ion and Cu0 nanoparticles with some new azo dyes. Antioxidant and in vitro cytotoxic activity. Spect. Acta Part A: Mol. Biomol. Spect., 2013, 107, 359-370.
[9]
Rizk, H.F.; Ibrahim, S.A.; El-Borai, M.A. Synthesis, dyeing performance on polyester fiber and antimicrobial studies of some novel pyrazolotriazine and pyrazolyl pyrazolone azo dyes. Arab. J. Chem., 2017, 10(2), 3303-3309.
[10]
Sze’kely, Z.; Fábián, P.; Torday, L.L.; Michejda, C.J.; Aszalós, A. Binding between the CD4 receptor and polysulfonated azo-dyes. An exploratory theoretical study on action-mechanism1. J. Mol. Struct. THEOCHEM, 1998, 423(1-2), 153-159.
[11]
Abu-Melha, S. Synthesis, antimicrobial evaluation and spectroscopic characterization of novel imidazolone, triazole and triazinone derivatives. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2012, 96, 898-905.
[12]
Sirajuddin, M.; Ali, S.; McKee, V.; Ullah, H. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2015, 138, 569-578.
[13]
Abbas, S.Y.; Basyouni, W.M.; El-Bayouki, K.A.M. Synthesis of new tridentate 5-(arylazo) salicylaldimine ligands and their Cu (II) complexes. J. Mol. Struct., 2013, 1050, 192-196.
[14]
Abdallah, S.M. Metal complexes of azo compounds derived from 4-acetamidophenol and substituted aniline. Arab. J. Chem., 2012, 5(2), 251-256.
[15]
AbouEl-Enein, S.A.; Emam, S.M.; Polis, M.W.; Emara, E.M. Synthesis and characterization of some metal complexes derived from azo compound of 4,4′-methylenedianiline and antipyrine: Evaluation of their biological activity on some land snail species. J. Mol. Struct., 2015, 1090, 567-578.
[16]
Alaghaz, A-N.M.A.; Zayed, M.E.; Alharbi, S.A.; Ammar, R.A.A.; Elhenawy, A. Synthesis, characterization, biological activity, molecular modeling and docking studies of complexes 4-(4-hydroxy)-3-(2-pyrazine-2-carbonyl)hydrazonomethylphenyl-diazen-yl-benzene-sulfonamide with manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium(II). J. Mol. Struct., 2015, 1084, 352-367.
[17]
Mohammadi, A.; Khalili, B.; Tahavor, M. Novel push–pull heterocyclic azo disperse dyes containing piperazine moiety: Synthesis, spectral properties, antioxidant activity and dyeing performance on polyester fibers. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2015, 150, 799-805.
[18]
Özkütük, M.; İpek, E.; Aydıner, B.; Mamaş, S.; Seferoğlu, Z. Synthesis, spectroscopic, thermal and electrochemical studies on thiazolyl azo based disperse dyes bearing coumarin. J. Mol. Struct., 2016, 1108, 521-532.
[19]
Qin, C-G.; Lu, C-X.; Ouyang, G-W.; Qin, K.; Zhang, F.; Shi, H-T.; Wang, X-H. Progress of azobenzene-based photoswitchable molecular probes and sensory chips for chemical and biological analysis. Chin. J. Anal. Chem., 2015, 43(3), 433-443.
[20]
Zhao, R.; Tan, C.; Xie, Y.; Gao, C.; Liu, H.; Jiang, Y. One step synthesis of azo compounds from nitroaromatics and anilines. Tetrahedron Lett., 2011, 52(29), 3805-3809.
[21]
Velasco, M.I.; Kinen, C.O.; Hoyos de Rossi, R.; Rossi, L.I. A green alternative to synthetize azo compounds. Dyes Pigments, 2011, 90(3), 259-264.
[22]
Shaw Stewart, P.D. Seasonality and selective trends in viral acute respiratory tract infections. Med. Hypotheses, 2016, 86, 104-119.
[23]
Beltra, J-C.; Decaluwe, H. Cytokines and persistent viral infections. Cytokine, 2016, 82, 4-15.
[24]
Li, W.; Li, X.; De Clercq, E.; Zhan, P.; Liu, X. Discovery of potent HIV-1 non-nucleoside reverse transcriptase inhibitors from arylthioacetanilide structural motif. Eur. J. Med. Chem., 2015, 102, 167-179.
[25]
Swidorski, J.J.; Liu, Z.; Sit, S-Y.; Chen, J.; Chen, Y.; Sin, N.; Venables, B.L.; Parker, D.D.; Nowicka-Sans, B.; Terry, B.J.; Protack, T.; Rahematpura, S.; Hanumegowda, U.; Jenkins, S.; Krystal, M.; Dicker, I.B.; Meanwell, N.A.; Regueiro-Ren, A. Inhibitors of HIV-1 maturation: Development of structure–activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids. Bioorg. Med. Chem. Lett., 2016, 26(8), 1925-1930.
[26]
Zhang, H.; Kang, D.; Huang, B.; Liu, N.; Zhao, F.; Zhan, P.; Liu, X. Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV agents: Recent advances and future opportunities. Eur. J. Med. Chem., 2016, 114, 65-78.
[27]
Naicker, K.P.; Jiang, S.; Lu, H.; Ni, J.; Boyer-Chatenet, L.; Wang, L-X.; Debnath, A.K. Synthesis and anti-HIV-1 activity of 4-[4-(4,6-bisphenylamino-[1,3,5]triazin-2-ylamino)-5-methoxy-2-methylphenylazo]-5-hydroxynaphthalene-2,7-disulfonic acid and its derivatives. Bioorg. Med. Chem., 2004, 12(5), 1215-1220.
[28]
Tevyashova, A.N.; Shtil, A.A.; Olsufyeva, E.N.; Luzikov, Y.N.; Reznikova, M.I.; Dezhenkova, L.G.; Isakova, E.B.; Bukhman, V.M.; Durandin, N.A.; Vinogradov, A.M.; Kuzmin, V.A.; Preobrazhenskaya, M.N. Modification of olivomycin A at the side chain of the aglycon yields the derivative with perspective antitumor characteristics. Bioorg. Med. Chem., 2011, 19(24), 7387-7393.
[29]
Tevyashova, A.N.; Olsufyeva, E.N.; Turchin, K.F.; Balzarini, J.; Bykov, E.E.; Dezhenkova, L.G.; Shtil, A.A.; Preobrazhenskaya, M.N. Reaction of the antitumor antibiotic olivomycin I with aryl diazonium salts. Synthesis, cytotoxic and antiretroviral potency of 5-aryldiazenyl-6-O-deglycosyl derivatives of olivomycin I. Bioorg. Med. Chem., 2009, 17(14), 4961-4967.
[30]
Allison, R.D.; Tong, X.; Moorman, A.C.; Ly, K.N.; Rupp, L.; Xu, F.; Gordon, S.C.; Holmberg, S.D. Increased incidence of cancer and cancer-related mortality among persons with chronic hepatitis C infection, 2006-2010. J. Hepatol., 2015, 63(4), 822-828.
[31]
Farghaly, T.A.; Abdalla, M.M. Synthesis, tautomerism, and antimicrobial, anti-HCV, anti-SSPE, antioxidant, and antitumor activities of arylazobenzosuberones. Bioorg. Med. Chem., 2009, 17(23), 8012-8019.
[32]
Yang, J.; Ma, M.; Wang, X-D.; Jiang, X-J.; Zhang, Y-Y.; Yang, W-Q.; Li, Z-C.; Wang, X-H.; Yang, B.; Ma, M-L. Synthesis and quantitative structure–activity relationships study for phenylpropenamide derivatives as inhibitors of hepatitis b virus replication. Eur. J. Med. Chem., 2015, 99, 82-91.
[33]
Wang, P.; Naduthambi, D.; Mosley, R.T.; Niu, C.; Furman, P.A.; Otto, M.J.; Sofia, M.J. Phenylpropenamide derivatives: Anti-hepatitis b virus activity of the z isomer, sar and the search for novel analogs. Bioorg. Med. Chem. Lett., 2011, 21(15), 4642-4647.
[34]
Drews, J. Drug discovery: A historical perspective. Science, 2000, 287(5460), 1960-1964.
[35]
Drews, J. Paul Ehrlich: Magister mundi. Nat. Rev. Drug Discov., 2004, 3, 797-800.
[36]
Moradi Rufchahi, E.O.; Pouramir, H.; Yazdanbakhsh, M.R.; Yousefi, H.; Bagheri, M.; Rassa, M. Novel azo dyes derived from 8-methyl-4-hydroxyl-2-quinolone: Synthesis, UV–vis studies and biological activity. Chin. Chem. Lett., 2013, 24(5), 425-428.
[37]
Abbas, S.Y.; El-Sharief, M.A.S.; Basyouni, W.M.; Fakhr, I.M.; El-Gammal, E.W. Thiourea derivatives incorporating a hippuric acid moiety: Synthesis and evaluation of antibacterial and antifungal activities. Eur. J. Med. Chem., 2013, 64, 111-120.
[38]
El-Sharief, M.A.S.; Abbas, S.Y.; El-Bayouki, K.A.; El-Gammal, E.W. Synthesis of thiosemicarbazones derived from N-(4-hippuric acid) thiosemicarbazide and different carbonyl compounds as antimicrobial agents. Eur. J. Med. Chem., 2013, 67, 263-268.
[39]
Sahoo, J.; Kumar Mekap, S.; Sudhir Kumar, P. Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation. J. Taibah Uni. Sci., 2015, 9(2), 187-195.
[40]
Chen, J.; He, Z-M.; Wang, F-L.; Zhang, Z-S.; Liu, X-Z.; Zhai, D-D.; Chen, W-D. Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. Eur. J. Pharmacol., 2016, 772, 33-42.
[41]
Kim, S-H.; Cho, S-H.; Youn, S-K.; Park, J-S.; Choi, J.T.; Bak, Y-S.; Yu, Y-B.; Kim, Y.K. Epidemiological characterization of skin fungal infections between the years 2006 and 2010 in Korea. Osong Public Health Res. Perspect., 2015, 6(6), 341-345.
[42]
Rodriguez-Tudela, J.L.; Alastruey-Izquierdo, A.; Gago, S.; Cuenca-Estrella, M.; León, C.; Miro, J.M.; Nuñez Boluda, A.; Ruiz Camps, I.; Sole, A.; Denning, D.W. Burden of serious fungal infections in Spain. Clin. Microbiol. Infect., 2015, 21(2), 183-189.
[43]
Srinivasan, A.; Leung, K.P.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. High-throughput nano-biofilm microarray for antifungal drug discovery. MBio, 2013, 4(4), e00331-e13.
[44]
Alaghaz, A-N.M. Ammar, Y.A.; Bayoumi, H.A.; Aldhlmani, S.A. Synthesis, spectral characterization, thermal analysis, molecular modeling and antimicrobial activity of new potentially N2O2 azo-dye Schiff base complexes. J. Mol. Struct., 2014, 1074, 359-375.
[45]
Mahata, D.; Mandal, S.M.; Bharti, R.; Gupta, V.K.; Mandal, M.; Nag, A.; Nando, G.B. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability. Int. J. Biol. Macromol., 2014, 69, 5-11.
[46]
Deep, A.; Kumar, P. Narasimhan; B., Lim; S.M.; Ramasamy, K.; Mishra, R.K.; Mani, V. 2-azetidinone derivatives: Synthesis, antimicrobial, anticancer evaluation and qsar studies. Acta Pol. Pharm., 2016, 73, 65.
[47]
Jangid, N.K.; Chauhan, N.P.S.; Meghwal, K.; Ameta, R.; Punjabi, P.B.; Weaver, G. Synthesis of dye-substituted polyanilines and study of their conducting and antimicrobial behavior. Cog. Chem., 2015, 1(1), 1084666.
[48]
Xu, H.; Zeng, X. Synthesis of diaryl-azo derivatives as potential antifungal agents. Bioorg. Med. Chem. Lett., 2010, 20(14), 4193-4195.
[49]
Rubio-Perez, C.; Tamborero, D. Schroeder, Michael P.; Antolín, Albert A.; Deu-Pons, J.; Perez-Llamas, C.; Mestres, J.; Gonzalez-Perez, A.; Lopez-Bigas, N. In Silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell, 2015, 27(3), 382-396.
[50]
Liu, C.; Chen, Z.; Chen, Z.; Zhang, T.; Lu, Y. Multiple tumor types may originate from bone marrow-derived cells. Neoplasia, 2006, 8(9), 716-724.
[51]
Lee, P.N.; Forey, B.A.; Coombs, K.J.; Lipowicz, P.J.; Appleton, S. Time trends in never smokers in the relative frequency of the different histological types of lung cancer, in particular adenocarcinoma. Regul. Toxicol. Pharmacol., 2016, 74, 12-22.
[52]
Basu Baul, T.S.; Paul, A.; Pellerito, L.; Scopelliti, M.; Pellerito, C.; Singh, P.; Verma, P.; Duthie, A.; de Vos, D.; Verma, R.P.; Englert, U. Molecular basis of the interaction of novel tributyltin(IV) 2/4-[(E)-2-(aryl)-1-diazenyl]benzoates endowed with an improved cytotoxic profile: Synthesis, structure, biological efficacy and QSAR studies. J. Inorg. Biochem., 2010, 104(9), 950-966.
[53]
Gouda, M.A.; Eldien, H.F.; Girges, M.M.; Berghot, M.A. Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety. J. Saudi Chem. Soc., 2016, 20(2), 151-157.
[54]
Nath, M.; Vats, M.; Roy, P. Design and microwave-assisted synthesis of tri-and dialkyltin (IV) hippurates, characterization, in vitro anti-cancer and in vivo anti-inflammatory activities. Med. Chem. Res., 2015, 24(1), 51-62.
[55]
Sharma, R.; Rawal, R.K.; Gaba, T.; Singla, N.; Malhotra, M.; Matharoo, S.; Bhardwaj, T.R. Design, synthesis and ex vivo evaluation of colon-specific azo based prodrugs of anticancer agents. Bioorg. Med. Chem. Lett., 2013, 23(19), 5332-5338.
[56]
Abuelhassan, A.H.; Badran, M.M.; Hassan, H.A.; Abdelhamed, D.; Elnabtity, S.; Aly, O.M. Design, synthesis, anticonvulsant and pharmacophore study of new 1-5,diaryl-1H-1,2,4-triazole-3-carboxamide derivatives. Med. Chem. Res., 2018, 27, 928-938.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy