[1]
Kalantarian H, Sideris C, Mortazavi B, Alshurafa N, Sarrafzadeh M. Dynamic computation offloading for low-power wearable health monitoring systems. IEEE Trans Biomed Eng 2017; 64(3): 621-8.
[2]
Pantelopoulos A, Bourbakis NG. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst 2010; 40(1): 1-12.
[3]
Avci A, Bosch S, Marin-Perianu M, Marin-Perianu R, Havinga P. Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In: Architecture of computing systems (ARCS). 2010 23rd international conference 2010; 1: pp. 1-10.
[4]
Lin W, Sun MT, Poovandran R, Zhang Z. Human activity recognition for video surveillance. In: Circuits and Systems. 2008. ISCAS 2008. IEEE Int Symp 2008; 12: pp. 2737-40.
[5]
Ahmed SH, Kim D. Named data networking-based smart home. ICT Express 2016; 2(3): 130-4.
[7]
Rautaray SS, Agrawal A. Vision based hand gesture recognition for human computer interaction: a survey. . Artificial Int Rev 2015; 43(1): 1-54.
[8]
Yeo HS, Lee BG, Lim H. Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware. Multimedia Tool Appl 2015; 74(8): 2687-715.
[9]
Ahmadi-Karvigh S, Ghahramani A, Becerik-Gerber B, Soibelman L. Real-time activity recognition for energy efficiency in buildings. Appl Energy 2018; 211: 146-60.
[10]
Mannini A, Sabatini AM. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensor 2010; 10(2): 1154-75.
[11]
Bao L, Intille SS. Activity recognition from user-annotated acceleration data. Int Conf Pervasive Comp 2004; 3: 1-17.
[12]
Aggarwal JK, Ryoo MS. Human activity analysis: a review. ACM Comp Survey 2011; 43(3): 16.
[13]
Wu W, Dasgupta S, Ramirez EE, Peterson C, Norman GJ. Classification accuracies of physical activities using smartphone motion sensors. J Med Internet Res 2012; 14(5): 130.
[14]
Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL. A public domain dataset for human activity recognition using smartphones. In: ESANN . 2013.
[15]
Garcia-Ceja E, Galván-Tejada CE, Brena R. Multi-view stacking for activity recognition with sound and accelerometer data. Inf Fusion 2018; 40: 45-56.
[16]
Ghio A, Oneto L. Byte The bullet: learning on real-world computing architectures. In: ESANN . 2014.
[17]
Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL. Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: International workshop on ambient assisted living. 2012; pp. 216-3.
[18]
Plötz T, Hammerla NY, Olivier P. Feature learning for activity recognition in ubiquitous computing. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence. 2011; 1729.
[19]
Khalifa S, Lan G, Hassan M, Seneviratne A, Das SK. Harke: Human activity recognition from kinetic energy harvesting data in wearable devices. IEEE Trans Mobile Comput 2018; 17(6): 1353-68.
[20]
Wang X, Gao L, Song J, Zhen X, Sebe N, Shen HT. Deep appearance and motion learning for egocentric activity recognition. Neurocomputing 2018; 275: 438-47.
[21]
Duong T, Phung D, Bui H, Venkatesh S. Efficient duration and hierarchical modeling for human activity recognition. Artif Intell 2009; 173(7-8): 830-56.
[22]
Barshan B, Yurtman A. Investigating inter-subject and inter-activity variations in activity recognition using wearable motion sensors. Comp J 2016; 59(9): 1345-62.
[23]
Altun K, Barshan B, Tunçel O. Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recog 2010; 43(10): 3605-20.
[24]
Bulling A, Blanke U, Schiele B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comp Survey (CSUR) 2014; 46(3): 33.
[25]
Yao R, Lin G, Shi Q, Ranasinghe DC. Efficient dense labelling of human activity sequences from wearables using fully convolutional networks. Pattern Recognit 2018; 78: 252-66.
[26]
Hammerla NY, Halloran S, Ploetz T. Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv preprint arXiv:160408880 2016.
[27]
Ma X, Hovy E. End-to-end sequence labeling via bidirectional lstm-cnns-crf. arXiv preprint arXiv: 160301354 2016.
[28]
Geras KJ. Mohamed Ar, Caruana R, Urban G, Wang S, Aslan O. Blending lstms into cnns. arXiv preprint arXiv:151106433 2015.
[29]
Wang J, Yu LC, Lai KR, Zhang X. Dimensional sentiment analysis using a regional CNN-LSTM model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2016; 11: pp. 225-30.
[30]
Donahue J, Anne Hendricks L, Guadarrama S, Rohrbach M, Venugopalan S, Saenko K. Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015; pp. 2625-34.
[31]
Chavarriaga R, Sagha H, Calatroni A, Digumarti ST, Tröster G. Millán JdR. The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recognition Lett 2013; 34(15): 2033-42.
[32]
Foerster F, Smeja M, Fahrenberg J. Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput Human Behav 1999; 15(5): 571-83.
[33]
Kwapisz JR, Weiss GM, Moore SA. Cell phone-based biometric identification. In: biometrics: theory Applications and Systems (BTAS) 2010. 1-7.
[34]
Sharma A, Lee YD, Chung WY. High accuracy human activity monitoring using neural network. In: Convergence and Hybrid Information Technology ICCIT’08 3rd International Conference. 2008; pp. 430-5.
[35]
Khan AM. Recognizing physical activities using Wii remote. Int J Inf Educ Technol 2013; 3(1): 60.
[36]
Shoaib M, Bosch S, Incel OD, Scholten H. Having a PJM, Fusion of smartphone motion sensors for physical activity recognition. Sensor 2014; 14(6): 10146-76.
[37]
Reyes-Ortiz JL, Oneto L, Samà A, Parra X, Anguita D. Transition-aware human activity recognition using smartphones. Neurocomputing 2016; 171: 754-67.
[38]
Ronao CA, Cho SB. Recognizing human activities from smartphone sensors using hierarchical continuous hidden Markov models. Int J Distr Sensor Netw 2017; 13(1): 1550147716683687.
[39]
Cao L, Wang Y, Zhang B, Jin Q, Vasilakos AV. GCHAR: an efficient Group-based Context-aware human activity recognition on smartphone. J Distr Comp 2018; 118: 67-80.
[40]
Bhattacharya S, Nurmi P, Hammerla N, Plötz T. Using unlabeled data in a sparse-coding framework for human activity recognition. Pervasive Mob Comp 2014; 15: 242-62.
[41]
Li Y, Shi D, Ding B, Liu D. Unsupervised feature learning for human activity recognition using smartphone sensors. Mining Intelligence and Knowledge Exploration: Springer 2014; 13: 99-107.
[42]
Vollmer C, Hellbach S, Eggert J, Gross HM. Sparse coding of human motion trajectories with non-negative matrix factorization. Neurocomputing 2014; 124: 22-32.
[43]
Hassan MM, Uddin MZ, Mohamed A, Almogren A. A robust human activity recognition system using smartphone sensors and deep learning. Future Generat Comput Syst 2018; 81: 307-13.
[44]
Yang J, Nguyen MN, San PP, Li X, Krishnaswamy S. Deep convolutional neural networks on multichannel time series for human activity recognition. In: IJCAI. 2015; 21: pp. 3995-4001.
[45]
Duffner S, Berlemont S, Lefebvre G, Garcia C. 3D gesture classification with convolutional neural networks. In: Acoustics, Speech and Signal Processing (ICASSP),2014. 432-5436.
[46]
Zheng Y, Liu Q, Chen E, Ge Y, Zhao JL. Time series classification using multi-channels deep convolutional neural networks. In: International Conference on Web-Age Information Management. 2014; pp. 298-310.
[47]
Zeng M, Nguyen LT, Yu B, et al. Convolutional neural networks for human activity recognition using mobile sensors. In: Mobile Computing, Applications and Services (MobiCASE). 2014; 11: pp. 197-205.
[48]
Ronao CA, Cho SB. Human activity recognition with smartphone sensors using deep learning neural networks. Exp Syst Appl 2016; 59: 235-44.
[49]
LeCun Y, Bengio Y, Hinton G. Deep learning nature. Int J Sci 2015; 521(7553): 436.
[50]
Ordóñez FJ, Roggen D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensor 2016; 16(1): 115.
[51]
Yu Z, Rennong Y, Guillaume C, Maoguo G. Deep Residual Bidir-LSTM for Human activity recognition using wearable sensors. arXiv preprint arXiv: 1708 08989 2017.
[52]
Inoue M, Inoue S, Nishida T. Deep recurrent neural network for mobile human activity recognition with high throughput. Artif Life 2018; 23(2): 173-85.
[53]
Nweke HF, Teh YW, Al-garadi MA, Alo UR. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Exp Syst Appl 2018; 105: 233-61.
[55]
Núñez JC, Cabido R, Pantrigo JJ, Montemayor AS, Vélez JF. Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition. Pattern Recog 2018; 76: 80-94.
[56]
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comp 1997; 9(8): 1735-80.
[57]
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 1994; 5(2): 157-66.
[58]
Pascanu R, Mikolov T, Bengio Y. Understanding the exploding gradient problemCoRR, abs/12115063 2012.
[59]
Wollmer M, Eyben F, Keshet J, Graves A, Schuller B, Rigoll G. Robust discriminative keyword spotting for emotionally colored spontaneous speech using bidirectional LSTM networks. In: Acoustics. Speech and Signal Processing. ICASSP 2009; pp. 3949-52.
[60]
Krogh A, Hertz JA. A simple weight decay can improve generalization. In: Advances in neural information processing systems NIPS Proceedings. 1992; 11: pp. 950-7.
[61]
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Res 2014; 15(1): 1929-58.
[62]
Zhang L, Wu X, Luo D. Recognizing human activities from raw accelerometer data using deep neural networks. In: 2015 IEEE 14th International Conference on Machine Learning and Applications ICMLA. 2015; 13: pp. 865-70.
[63]
Cao H, Nguyen MN, Phua C, Krishnaswamy S, Li X. An integrated framework for human activity classification. Ubi Comp 2012; 4: 310-40.