Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Exploring the Potential Bioactive Properties of Marine Natural Products

Author(s): Arasali S. Zarena*

Volume 15, Issue 5, 2019

Page: [524 - 539] Pages: 16

DOI: 10.2174/1573407214666180727092555

Price: $65

Abstract

Background: The marine world is highly diversified and is of great importance for its sustainable utilization as resources for human life. Although marine resource economy has its own share in the international market, there is only a handful of research occurring, the probability of not being completely explored. It has now become virtually possible to characterize the metabolites by bioanalytical techniques and molecular biology methodology. The marine biomes harbour largely diatoms, bacteria, fungi, actinomycetes, and cyanobacteria that are harnessed for their rich structurally diverse secondary metabolites. Recently, sponges and algae have gained commercial importance. Focuses are now shifting towards ascomycota, actinobacteria, cyanobacteria and other classes due to the advanced technology in extraction of the active components from these phyla and deeper exploration of the oceans.

Method: A vast report on marine natural products have been regularly updated and published which clearly indicates the immense research undertaken in ocean flora and fauna. Herein we focus on providing information on the potential uses of marine natural products as bioactive agents in the last five years. The data were collected from research and review articles from peer-reviewed journals.

Results: A total of 128 articles are citied in the present review covering broad spectrum of marine organism and their importance in the field of medical biology. Information on source organisms, collection sites, was assembled and a total of 120 biologically important compounds are described here.

Conclusion: The present study provides information to bioprospecting efforts in the field of marine science. Herein, I have emphasized diverse biological activities isolated from marine microbes to invertebrate against many pathogenic microorganisms and cancer, thus making marine-derived natural products valuable commodities. Future prospects for the discovery of new marine products and process development could add to the economic importance.

Keywords: Antimicrobial, marine microorganism, cell line, cytotoxicity, drug metabolite, mangroves.

Graphical Abstract

[1]
Mouritsen, K.N. The Hydrobia ulvae-Maritrema subdolum association: Influence of temperature, salinity, light, water-pressure and secondary host exudates on cercarial emergence and longevity. J. Helminthol., 2002, 76(4), 341-347.
[http://dx.doi.org/10.1079/JOH2002136] [PMID: 12498640]
[2]
Tsueng, G.; Lam, K.S. A preliminary investigation on the growth requirement for monovalent cations, divalent cations and medium ionic strength of marine actinomycete Salinispora. Appl. Microbiol. Biotechnol., 2010, 86(5), 1525-1534.
[http://dx.doi.org/10.1007/s00253-009-2424-7] [PMID: 20084507]
[3]
Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol., 2010, 3(5), 544-563.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00179.x] [PMID: 21255352]
[4]
Graça, A.P.; Bondoso, J.; Gaspar, H.; Xavier, J.R.; Monteiro, M.C.; de la Cruz, M.; Oves-Costales, D.; Vicente, F.; Lage, O.M. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS One, 2013, 8(11)e78992
[http://dx.doi.org/10.1371/journal.pone.0078992] [PMID: 24236081]
[5]
Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P.; Egan, S. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol., 2010, 3(5), 544-563.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00179.x] [PMID: 21255352]
[6]
Jose, P.A.; Jebakumar, S.R. Non-streptomycete actinomycetes nourish the current microbial antibiotic drug discovery. Front. Microbiol., 2013, 4, 240.
[http://dx.doi.org/10.3389/fmicb.2013.00240] [PMID: 23970883]
[7]
Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.K. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol. Res., 2014, 169(4), 262-278.
[http://dx.doi.org/10.1016/j.micres.2013.07.014] [PMID: 23958059]
[8]
Rashad, F.M.; Fathy, H.M.; El-Zayat, A.S.; Elghonaimy, A.M. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol. Res., 2015, 175, 34-47.
[http://dx.doi.org/10.1016/j.micres.2015.03.002] [PMID: 25805507]
[9]
Singh, L.S.; Sharma, H.; Talukdar, N.C. Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur, India. BMC Microbiol., 2014, 14(1), 278.
[http://dx.doi.org/10.1186/s12866-014-0278-3] [PMID: 25406714]
[10]
Okuyama, H.; Orikasa, Y.; Nishida, T. Significance of antioxidative functions of eicosapentaenoic and docosahexaenoic acids in marine microorganisms. Appl. Environ. Microbiol., 2008, 74(3), 570-574.
[http://dx.doi.org/10.1128/AEM.02256-07] [PMID: 18065628]
[11]
Kohlmeyer, J.; Kohlmeyer, E. Marine mycology: the higher fungi; Elsevier, 2013.
[12]
Li, X.D.; Li, X.M.; Xu, G.M.; Zhang, P.; Wang, B.G. Antimicrobial phenolic bisabolanes and related derivatives from Penicillium aculeatum SD-321, a deep sea sediment-derived fungus. J. Nat. Prod., 2015, 78(4), 844-849.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00004] [PMID: 25763602]
[13]
Fischer, R.; Mader, O.; Jung, G.; Brock, R. Extending the applicability of carboxyfluorescein in solid-phase synthesis. Bioconjug. Chem., 2003, 14(3), 653-660.
[http://dx.doi.org/10.1021/bc025658b] [PMID: 12757391]
[14]
Wang, D.X.; Liang, M.T.; Tian, G.J.; Lin, H.; Liu, H.Q. A facile pathway to synthesize diketopiperazine derivatives. Tetrahedron Lett., 2002, 43(5), 865-867.
[http://dx.doi.org/10.1016/S0040-4039(01)02005-6]
[15]
El-Gendy, Bel-D..; Rateb, M.E. Antibacterial activity of diketopiperazines isolated from a marine fungus using t-butoxycarbonyl group as a simple tool for purification. Bioorg. Med. Chem. Lett., 2015, 25(16), 3125-3128.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.010] [PMID: 26099531]
[16]
Liao, L.; You, M.; Chung, B.K.; Oh, D.C.; Oh, K.B.; Shin, J. Alkaloidal metabolites from a marine-derived Aspergillus sp. fungus. J. Nat. Prod., 2015, 78(3), 349-354.
[http://dx.doi.org/10.1021/np500683u] [PMID: 25581396]
[17]
Zhang, P.; Mándi, A.; Li, X.M.; Du, F.Y.; Wang, J.N.; Li, X.; Kurtán, T.; Wang, B.G. Varioxepine A, a 3H-oxepine-containing alkaloid with a new oxa-cage from the marine algal-derived endophytic fungus Paecilomyces variotii. Org. Lett., 2014, 16(18), 4834-4837.
[http://dx.doi.org/10.1021/ol502329k] [PMID: 25167167]
[18]
Wang, J.; Wei, X.; Qin, X.; Lin, X.; Zhou, X.; Liao, S.; Yang, B.; Liu, J.; Tu, Z.; Liu, Y. Arthpyrones A-C, pyridone alkaloids from a sponge-derived fungus Arthrinium arundinis ZSDS1-F3. Org. Lett., 2015, 17(3), 656-659.
[http://dx.doi.org/10.1021/ol503646c] [PMID: 25606827]
[19]
Cardoso Martínez, F.; de la Rosa, J.M.; Díaz Marrero, A.R.; Darias, J.; D’Croz, L.; Cerella, C.; Diederich, M. Cueto, M. Oximoaspergillimide a fungal derivative from a marine isolate of aspergillus sp. Eur. J. Org. Chem., 2015, 10, 2256-2261.
[http://dx.doi.org/10.1002/ejoc.201403668]
[20]
Zin, W.W.; Buttachon, S.; Buaruang, J.; Gales, L.; Pereira, J.A.; Pinto, M.M.; Silva, A.M.; Kijjoa, A. A new meroditerpene and a new tryptoquivaline analog from the algicolous fungus Neosartorya takakii KUFC 7898. Mar. Drugs, 2015, 13(6), 3776-3790.
[http://dx.doi.org/10.3390/md13063776] [PMID: 26082989]
[21]
Sun, Y.; Tomura, T.; Sato, J.; Iizuka, T.; Fudou, R.; Ojika, M. Isolation and biosynthetic analysis of haliamide, a new PKS-NRPS hybrid metabolite from the marine myxobacterium Haliangium ochraceum. Molecules, 2016, 21(1), 59.
[http://dx.doi.org/10.3390/molecules21010059] [PMID: 26751435]
[22]
Lee, D.S.; Yoon, C.S.; Jung, Y.T.; Yoon, J.H.; Kim, Y.C.; Oh, H. Marine-derived secondary metabolite, griseusrazin a, suppresses inflammation through heme oxygenase-1 induction in activated RAW264. 7 Macrophages. J. Nat. Prod., 2016, 79(4), 1105-1111.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00009] [PMID: 27019105]
[23]
Ngan, N.T.; Quang, T.H.; Kim, K.W.; Kim, H.J.; Sohn, J.H.; Kang, D.G.; Lee, H.S.; Kim, Y.C.; Oh, H. Anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungal strain Penicillium sp. SF-5629. Arch. Pharm. Res., 2017, 40(3), 328-337.
[http://dx.doi.org/10.1007/s12272-017-0890-5] [PMID: 28074397]
[24]
Prata Sena, M.; Ramos, A.A.; Buttachon, S.; Castro Carvalho, B.; Marques, P.; Dethoup, T.; Kijjoa, A. Rocha, E. Cytotoxic activity metabolites of secondary from marine derived fungus Neosartorya siamensis in human cancer cells. Phytother. Res., 2016, 30(11), 1862-1871.
[http://dx.doi.org/10.1002/ptr.5696] [PMID: 27530464]
[25]
Luo, X.; Zhou, X.; Lin, X.; Qin, X.; Zhang, T.; Wang, J.; Tu, Z.; Yang, B.; Liao, S.; Tian, Y.; Pang, X.; Kaliyaperumal, K.; Li, J.L.; Tao, H.; Liu, Y. Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Nat. Prod. Res., 2017, 31(16), 1958-1962.
[http://dx.doi.org/10.1080/14786419.2016.1266353] [PMID: 28068839]
[26]
Lei, H.; Lin, X.; Han, L.; Ma, J.; Ma, Q.; Zhong, J.; Liu, Y.; Sun, T.; Wang, J.; Huang, X. New metabolites and bioactive chlorinated benzophenone derivatives produced by a marine-derived fungus Pestalotiopsis heterocornis. Mar. Drugs, 2017, 15(3), 69.
[http://dx.doi.org/10.3390/md15030069] [PMID: 28335391]
[27]
Liu, S.; Wang, H.; Su, M.; Hwang, G.J.; Hong, J.; Jung, J.H. New metabolites from the sponge-derived fungus Aspergillus sydowii J05B-7F-4. Nat. Prod. Res., 2017, 31(14), 1682-1686.
[http://dx.doi.org/10.1080/14786419.2017.1289205] [PMID: 28278674]
[28]
Nalli, Y.; Gupta, S.; Khajuria, V.; Singh, V.P.; Sajgotra, M.; Ahmed, Z.; Thakur, N.L.; Ali, A. TNF-α and IL-6 inhibitory effects of cyclic dipeptides isolated from marine bacteria Streptomyces sp. Med. Chem. Res., 2017, 26(1), 93-100.
[http://dx.doi.org/10.1007/s00044-016-1730-8]
[29]
Kebede, B.; Wrigley, S.K.; Prashar, A.; Rahlff, J.; Wolf, M.; Reinshagen, J.; Gribbon, P.; Imhoff, J.F.; Silber, J.; Labes, A.; Ellinger, B. Establishing the Secondary Metabolite Profile of the Marine Fungus: Tolypocladium geodes sp. MF458 and subsequent optimisation of bioactive secondary metabolite production. Mar. Drugs, 2017, 15(4), 84.
[http://dx.doi.org/10.3390/md15040084] [PMID: 28333084]
[30]
Kalinovskaya, N.I.; Romanenko, L.A.; Kalinovsky, A.I. Antibacterial low-molecular-weight compounds produced by the marine bacterium Rheinheimera japonica KMM 9513T. Anto. Leeuw. Int. J. G., 2017, 110(5), 719-726.
[http://dx.doi.org/10.1007/s10482-017-0839-1] [PMID: 28176144]
[31]
Kim, Y.S.; Kim, S.K.; Park, S.J. Apoptotic effect of demethoxyfumitremorgin C from marine fungus Aspergillus fumigatus on PC3 human prostate cancer cells. Chem. Biol. Interact., 2017, 269, 18-24.
[http://dx.doi.org/10.1016/j.cbi.2017.03.015] [PMID: 28359723]
[32]
Jans, P.E.; Mfuh, A.M.; Arman, H.D.; Shaffer, C.V.; Larionov, O.V.; Mooberry, S.L. Cytotoxicity and mechanism of action of the marine-derived fungal metabolite trichodermamide b and synthetic analogues. J. Nat. Prod., 2017, 80(3), 676-683.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00963] [PMID: 28051860]
[33]
Abdelfattah, M.S.; Elmallah, M.I.Y.; Mohamed, A.A.; Ishibashi, M. Sharkquinone, a new ana-quinonoid tetracene derivative from marine-derived Streptomyces sp. EGY1 with TRAIL resistance-overcoming activity. J. Nat. Med., 2017, 71(3), 564-569.
[http://dx.doi.org/10.1007/s11418-017-1086-5] [PMID: 28378198]
[34]
Dineshkumar, K.; Vasudevan, A.; Hopper, W. Ligand based-pharmacophore modeling and extended bio-activity prediction for salinosporamide a, b and c from marine actinomycetes Salinispora tropica. Comb. Chem. High Throughput Screen., 2017, 20(1), 3-19.
[http://dx.doi.org/10.2174/1386207319666161215154128] [PMID: 28000560]
[35]
Elhady, S.S.; El-Halawany, A.M.; Alahdal, A.M.; Hassanean, H.A.; Ahmed, S.A. A new bioactive metabolite isolated from the red sea marine sponge Hyrtios erectus. Molecules, 2016, 21(1), 82.
[http://dx.doi.org/10.3390/molecules21010082] [PMID: 26784155]
[36]
Bai, Z.Q.; Lin, X.; Wang, Y.; Wang, J.; Zhou, X.; Yang, B.; Liu, J.; Yang, X.; Wang, Y.; Liu, Y. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia, 2014, 95, 194-202.
[http://dx.doi.org/10.1016/j.fitote.2014.03.021] [PMID: 24704337]
[37]
Tao, Y.W.; Lin, Y.C.; She, Z.G.; Lin, M.T.; Chen, P.X.; Zhang, J.Y. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anti-Cancer Ag. Med. Chem. Formerly Current Medicinal Chemistry-Anti-Cancer Agents, 2015, 15(2), 258-266.
[http://dx.doi.org/10.2174/1871520614666140825112255]
[38]
Zhang, W.; Xu, L.; Yang, L.; Huang, Y.; Li, S.; Shen, Y. Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia, 2014, 96, 146-151.
[http://dx.doi.org/10.1016/j.fitote.2014.05.001] [PMID: 24821321]
[39]
Meng, L.H.; Li, X.M.; Lv, C.T.; Huang, C.G.; Wang, B.G. Brocazines A-F, cytotoxic bisthiodiketopiperazine derivatives from Penicillium brocae MA-231, an endophytic fungus derived from the marine mangrove plant Avicennia marina. J. Nat. Prod., 2014, 77(8), 1921-1927.
[http://dx.doi.org/10.1021/np500382k] [PMID: 25105722]
[40]
Meng, L.H.; Du, F.Y.; Li, X.M.; Pedpradab, P.; Xu, G.M.; Wang, B.G. Rubrumazines A-C, indolediketopiperazines of the isoechinulin class from Eurotium rubrum MA-150, a fungus obtained from marine mangrove-derived rhizospheric soil. J. Nat. Prod., 2015, 78(4), 909-913.
[http://dx.doi.org/10.1021/np5007839] [PMID: 25730346]
[41]
Meng, L.H.; Li, X.M.; Liu, Y.; Wang, B.G. Penicibilaenes A and B, sesquiterpenes with a tricyclo[6.3.1.0(1,5)]dodecane skeleton from the marine isolate of Penicillium bilaiae MA-267. Org. Lett., 2014, 16(23), 6052-6055.
[http://dx.doi.org/10.1021/ol503046u] [PMID: 25408229]
[42]
Liu, Y.; Li, X.M.; Meng, L.H.; Wang, B.G. Polyketides from the marine mangrove-derived fungus Aspergillus ochraceus MA-15 and their activity against aquatic pathogenic bacteria. Phytochem. Lett., 2015, 12, 232-236.
[http://dx.doi.org/10.1016/j.phytol.2015.04.009]
[43]
Li, C.; Wang, J.; Luo, C.; Ding, W.; Cox, D.G. A new cyclopeptide with antifungal activity from the co-culture broth of two marine mangrove fungi. Nat. Prod. Res., 2014, 28(9), 616-621.
[http://dx.doi.org/10.1080/14786419.2014.887074] [PMID: 24571709]
[44]
Zhang, L.; Niaz, S.I.; Khan, D.; Wang, Z.; Zhu, Y.; Zhou, H.; Lin, Y.; Li, J.; Liu, L. Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus trichoderma sp. (Strain 307) by co-cultivation with Acinetobacter johnsonii (Strain B2). Mar. Drugs, 2017, 15(2), 35.
[http://dx.doi.org/10.3390/md15020035] [PMID: 28208607]
[45]
Cohen, Y.; Jørgensen, B.B.; Revsbech, N.P.; Poplawski, R. Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl. Environ. Microbiol., 1986, 51(2), 398-407.
[PMID: 16346996]
[46]
Burja, A.M.; Banaigs, B.; Abou-Mansour, E.; Burgess, J.G.; Wright, P.C. Marine cyanobacteria-A prolific source of natural products. Tetrahedron, 2001, 57(46), 9347-9377.
[http://dx.doi.org/10.1016/S0040-4020(01)00931-0]
[47]
Soares, A.R.; Engene, N.; Gunasekera, S.P.; Sneed, J.M.; Paul, V.J. Carriebowlinol, an antimicrobial tetrahydroquinolinol from an assemblage of marine cyanobacteria containing a novel taxon. J. Nat. Prod., 2015, 78(3), 534-538.
[http://dx.doi.org/10.1021/np500598x] [PMID: 25536090]
[48]
Shishido, T.K.; Humisto, A.; Jokela, J.; Liu, L.; Wahlsten, M.; Tamrakar, A.; Fewer, D.P.; Permi, P.; Andreote, A.P.; Fiore, M.F.; Sivonen, K. Antifungal compounds from cyanobacteria. Mar. Drugs, 2015, 13(4), 2124-2140.
[http://dx.doi.org/10.3390/md13042124] [PMID: 25871291]
[49]
Vestola, J.; Shishido, T.K.; Jokela, J.; Fewer, D.P.; Aitio, O.; Permi, P.; Wahlsten, M.; Wang, H.; Rouhiainen, L.; Sivonen, K. Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc. Natl. Acad. Sci. USA, 2014, 111(18), E1909-E1917.
[http://dx.doi.org/10.1073/pnas.1320913111] [PMID: 24742428]
[50]
Naman, C.B.; Rattan, R.; Nikoulina, S.E.; Lee, J.; Miller, B.W.; Moss, N.A.; Armstrong, L.; Boudreau, P.D.; Debonsi, H.M.; Valeriote, F.A.; Dorrestein, P.C.; Gerwick, W.H. Integrating molecular networking and biological assays to target the isolation of a cytotoxic cyclic octapeptide, samoamide a, from an American samoan marine cyanobacterium. J. Nat. Prod., 2017, 80(3), 625-633.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00907] [PMID: 28055219]
[51]
Bertin, M.J.; Wahome, P.G.; Zimba, P.V.; He, H.; Moeller, P.D. Trichophycin A, a cytotoxic linear polyketide isolated from a Trichodesmium thiebautii bloom. Mar. Drugs, 2017, 15(1), 10.
[http://dx.doi.org/10.3390/md15010010] [PMID: 28067831]
[52]
Patel, V.; Berthold, D.; Puranik, P.; Gantar, M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Rep. (Amst.), 2014, 5, 112-119.
[http://dx.doi.org/10.1016/j.btre.2014.12.001] [PMID: 28626689]
[53]
Hwang, B.S.; Kim, H.S.; Yih, W.; Jeong, E.J.; Rho, J.R. Acuminolide A: structure and bioactivity of a new polyether macrolide from dinoflagellate Dinophysis acuminata. Org. Lett., 2014, 16(20), 5362-5365.
[http://dx.doi.org/10.1021/ol502567g] [PMID: 25259727]
[54]
Domínguez, H.J.; Napolitano, J.G.; Fernández-Sánchez, M.T.; Cabrera-García, D.; Novelli, A.; Norte, M.; Fernández, J.J.; Daranas, A.H. Belizentrin, a highly bioactive macrocycle from the dinoflagellate Prorocentrum belizeanum. Org. Lett., 2014, 16(17), 4546-4549.
[http://dx.doi.org/10.1021/ol502102f] [PMID: 25127317]
[55]
Nuzzo, G.; Cutignano, A.; Sardo, A.; Fontana, A. Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae. J. Nat. Prod., 2014, 77(6), 1524-1527.
[http://dx.doi.org/10.1021/np500275x] [PMID: 24926538]
[56]
Minamida, M.; Kumagai, K.; Ulanova, D.; Akakabe, M.; Konishi, Y.; Tominaga, A.; Tanaka, H.; Tsuda, M.; Fukushi, E.; Kawabata, J.; Masuda, A.; Tsuda, M. Amphirionin-4 with potent proliferation-promoting activity on bone marrow stromal cells from a marine dinoflagellate amphidinium species. Org. Lett., 2014, 16(18), 4858-4861.
[http://dx.doi.org/10.1021/ol5023504] [PMID: 25188336]
[57]
Kubota, T.; Iwai, T.; Sakai, K.; Gonoi, T.; Kobayashi, J. Amphidinins C-F, amphidinolide Q analogues from marine dinoflagellate Amphidinium sp. Org. Lett., 2014, 16(21), 5624-5627.
[http://dx.doi.org/10.1021/ol502685z] [PMID: 25347521]
[58]
Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs, 2011, 9(6), 1056-1100.
[http://dx.doi.org/10.3390/md9061056] [PMID: 21747748]
[59]
Bocanegra, A.; Bastida, S.; Benedí, J.; Ródenas, S.; Sánchez-Muniz, F.J. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J. Med. Food, 2009, 12(2), 236-258.
[http://dx.doi.org/10.1089/jmf.2008.0151] [PMID: 19459725]
[60]
Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2009, 26(2), 170-244.
[http://dx.doi.org/10.1039/b805113p] [PMID: 19177222]
[61]
Pinteus, S.; Alves, C.; Monteiro, H.; Araújo, E.; Horta, A.; Pedrosa, R. Asparagopsis armata and Sphaerococcus coronopifolius as a natural source of antimicrobial compounds. World J. Microbiol. Biotechnol., 2015, 31(3), 445-451.
[http://dx.doi.org/10.1007/s11274-015-1797-2] [PMID: 25588525]
[62]
Lira, M.L.; Lopes, R.; Gomes, A.P.; Barcellos, G.; Verícimo, M.; Osako, K.; Ortiz-Ramirez, F.A.; Ramos, C.J.; Cavalcanti, D.N.; Teixeira, V.L.; do Amaral, V. Anti-leishmanial activity of Brazilian green, brown, and red algae. J. Appl. Phycol., 2016, 28(1), 591-598.
[http://dx.doi.org/10.1007/s10811-015-0538-0]
[63]
Chinnababu, B.; Purushotham Reddy, S.; Sankara Rao, P.; Loka Reddy, V.; Sudheer Kumar, B.; Rao, J.V.; Prakasham, R.S.; Suresh Babu, K. Isolation, semi-synthesis and bio-evaluation of spatane derivatives from the brown algae Stoechospermum marginatum. Bioorg. Med. Chem. Lett., 2015, 25(12), 2479-2483.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.061] [PMID: 25978960]
[64]
Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci., 2014, 4(5), 571-576.
[http://dx.doi.org/10.1007/s13204-013-0233-x]
[65]
Feng, M.T.; Yu, X.Q.; Yang, P.; Yang, H.; Lin, K.; Mao, S.C. Two new antifungal polyunsaturated fatty acid ethyl esters from the red alga Laurencia okamurai. Chem. Nat. Compd., 2015, 51(3), 418-422.
[http://dx.doi.org/10.1007/s10600-015-1306-8]
[66]
Greff, S.; Zubia, M.; Genta-Jouve, G.; Massi, L.; Perez, T.; Thomas, O.P. Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis. J. Nat. Prod., 2014, 77(5), 1150-1155.
[http://dx.doi.org/10.1021/np401094h] [PMID: 24746270]
[67]
García-Bueno, N.; Decottignies, P.; Turpin, V.; Dumay, J.; Paillard, C.; Stiger-Pouvreau, V.; Kervarec, N.; Pouchus, Y.F.; Marín-Atucha, A.A.; Fleurence, J. Seasonal antibacterial activity of two red seaweeds, Palmaria palmata and Grateloupia turuturu, on European abalone pathogen Vibrio harveyi. Aquat. Living Resour., 2014, 27(2), 83-89.
[http://dx.doi.org/10.1051/alr/2014009]
[68]
Horta, A.; Pinteus, S.; Alves, C.; Fino, N.; Silva, J.; Fernandez, S.; Rodrigues, A.; Pedrosa, R. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Mar. Drugs, 2014, 12(3), 1676-1689.
[http://dx.doi.org/10.3390/md12031676] [PMID: 24663118]
[69]
El Hattab, M.; Genta-Jouve, G.; Bouzidi, N.; Ortalo-Magné, A.; Hellio, C.; Maréchal, J.P.; Piovetti, L.; Thomas, O.P.; Culioli, G. Cystophloroketals A-E, unusual phloroglucinol-meroterpenoid hybrids from the brown alga Cystoseira tamariscifolia. J. Nat. Prod., 2015, 78(7), 1663-1670.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00264] [PMID: 26158859]
[70]
Pereira, R.C.; Lourenço, A.L.; Terra, L.; Abreu, P.A.; Laneuville Teixeira, V.; Castro, H.C. Marine Diterpenes: molecular modeling of thrombin inhibitors with potential biotechnological application as an antithrombotic. Mar. Drugs, 2017, 15(3), 79.
[http://dx.doi.org/10.3390/md15030079] [PMID: 28335516]
[71]
Shukla, S. Secondary metabolites from marine microorganisms and therapeutic efficacy: A mini review. Indian J. Geomarine Sci., 2016, 45(10), 1245-1254.
[72]
Vizetto-Duarte, C.; Custódio, L.; Gangadhar, K.N.; Lago, J.H.; Dias, C.; Matos, A.M.; Neng, N.; Nogueira, J.M.; Barreira, L.; Albericio, F.; Rauter, A.P.; Varela, J. Isololiolide, a carotenoid metabolite isolated from the brown alga Cystoseira tamariscifolia, is cytotoxic and able to induce apoptosis in hepatocarcinoma cells through caspase-3 activation, decreased Bcl-2 levels, increased p53 expression and PARP cleavage. Phytomedicine, 2016, 23(5), 550-557.
[http://dx.doi.org/10.1016/j.phymed.2016.02.008] [PMID: 27064014]
[73]
Schmidt, E.W.; Obraztsova, A.Y.; Davidson, S.K.; Faulkner, D.J.; Haygood, M.G. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium,“Candidatus Entotheonella palauensis. Mar. Biol., 2000, 136(6), 969-977.
[http://dx.doi.org/10.1007/s002270000273]
[74]
Webster, N.S.; Taylor, M.W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol., 2012, 14(2), 335-346.
[http://dx.doi.org/10.1111/j.1462-2920.2011.02460.x] [PMID: 21443739]
[75]
Chakrabarti, D.; Wright, A. Anti-Malarial compounds from marine natural products. U.S. Patent No. 9,181,251, 2015.
[76]
Anand, T.P.; Bhat, A.W.; Shouche, Y.S.; Roy, U.; Siddharth, J.; Sarma, S.P. Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol. Res., 2006, 161(3), 252-262.
[http://dx.doi.org/10.1016/j.micres.2005.09.002] [PMID: 16765842]
[77]
Gros, E.; Al-Mourabit, A.; Martin, M.T.; Sorres, J.; Vacelet, J.; Frederich, M.; Aknin, M.; Kashman, Y.; Gauvin-Bialecki, A. Netamines H-N, tricyclic alkaloids from the marine sponge Biemna laboutei and their antimalarial activity. J. Nat. Prod., 2014, 77(4), 818-823.
[http://dx.doi.org/10.1021/np4009283] [PMID: 24601655]
[78]
Grkovic, T.; Blees, J.S.; Bayer, M.M.; Colburn, N.H.; Thomas, C.L.; Henrich, C.J.; Peach, M.L.; McMahon, J.B.; Schmid, T.; Gustafson, K.R. Tricyclic guanidine alkaloids from the marine sponge Acanthella cavernosa that stabilize the tumor suppressor PDCD4. Mar. Drugs, 2014, 12(8), 4593-4601.
[http://dx.doi.org/10.3390/md12084593] [PMID: 25196934]
[79]
Dobretsov, S.; Al-Wahaibi, A.S.; Lai, D.; Al-Sabahi, J.; Claereboudt, M.; Proksch, P.; Soussi, B. Inhibition of bacterial fouling by soft coral natural products. Int. Biodeterior. Biodegradation, 2015, 98, 53-58.
[http://dx.doi.org/10.1016/j.ibiod.2014.10.019]
[80]
Sun, S.; Canning, C.B.; Bhargava, K.; Sun, X.; Zhu, W.; Zhou, N.; Zhang, Y.; Zhou, K. Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea. Bioorg. Med. Chem. Lett., 2015, 25(10), 2181-2183.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.057] [PMID: 25863431]
[81]
Hagiwara, K.; Garcia Hernandez, J.E.; Harper, M.K.; Carroll, A.; Motti, C.A.; Awaya, J.; Nguyen, H.Y.; Wright, A.D. Puupehenol, a potent antioxidant antimicrobial meroterpenoid from a Hawaiian deep-water Dactylospongia sp. sponge. J. Nat. Prod., 2015, 78(2), 325-329.
[http://dx.doi.org/10.1021/np500793g] [PMID: 25668638]
[82]
Majik, M.S.; Shirodkar, D.; Rodrigues, C.; D’Souza, L.; Tilvi, S. Evaluation of single and joint effect of metabolites isolated from marine sponges, Fasciospongia cavernosa and Axinella donnani on antimicrobial properties. Bioorg. Med. Chem. Lett., 2014, 24(13), 2863-2866.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.097] [PMID: 24825299]
[83]
Gotsbacher, M.P.; Karuso, P. New antimicrobial bromotyrosine analogues from the sponge Pseudoceratina purpurea and its predator Tylodina corticalis. Mar. Drugs, 2015, 13(3), 1389-1409.
[http://dx.doi.org/10.3390/md13031389] [PMID: 25786066]
[84]
Youssef, D.T.; Shaala, L.A.; Alshali, K.Z. Bioactive hydantoin alkaloids from the Red Sea marine sponge Hemimycale arabica. Mar. Drugs, 2015, 13(11), 6609-6619.
[http://dx.doi.org/10.3390/md13116609] [PMID: 26516870]
[85]
Liu, Y.; Li, X.M.; Meng, L.H.; Jiang, W.L.; Xu, G.M.; Huang, C.G.; Wang, B.G. Bisthiodiketopiperazines and acorane sesquiterpenes produced by the marine-derived fungus Penicillium adametzioides AS-53 on different culture media. J. Nat. Prod., 2015, 78(6), 1294-1299.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00102] [PMID: 26039736]
[86]
Nazemi, M.; Moradi, Y.; Rezvani Gilkolai, F.; Ahmaditaba, M.A.; Gozari, M.; Salari, Z. Antimicrobial activities of semi polar-nonpolar and polar secondary metabolites of sponge Dysidea pallescens from Hengam Island, Persian Gulf. Iranian. J. Fisheries. Sci., 2017, 15(5), 200-209.
[87]
Arai, M.; Shin, D.; Kamiya, K.; Ishida, R.; Setiawan, A.; Kotoku, N.; Kobayashi, M. Marine spongean polybrominated diphenyl ethers, selective growth inhibitors against the cancer cells adapted to glucose starvation, inhibits mitochondrial complex II. J. Nat. Med., 2017, 71(1), 44-49.
[http://dx.doi.org/10.1007/s11418-016-1025-x] [PMID: 27449332]
[88]
Hong, L.L.; Yu, H.B.; Wang, J.; Jiao, W.H.; Cheng, B.H.; Yang, F.; Zhou, Y.J.; Gu, B.B.; Song, S.J.; Lin, H.W. Unusual Anti-allergic Diterpenoids from the Marine Sponge Hippospongia lachne. Sci. Rep., 2017, 7, 43138.
[http://dx.doi.org/10.1038/srep43138] [PMID: 28224981]
[89]
Matobole, R.M.; van Zyl, L.J.; Parker-Nance, S.; Davies-Coleman, M.T.; Trindade, M. Antibacterial activities of bacteria isolated from the marine sponges Isodictya compressa and Higginsia bidentifera collected from Algoa Bay, South Africa. Mar. Drugs, 2017, 15(2), 47.
[http://dx.doi.org/10.3390/md15020047] [PMID: 28218694]
[90]
Chen, W.T.; Li, Y.; Guo, Y.W. Terpenoids of Sinularia soft corals: Chemistry and bioactivity. Acta Pharm. Sin. B, 2012, 2(3), 227-237.
[http://dx.doi.org/10.1016/j.apsb.2012.04.004]
[91]
Cheng, Y.B.; Lan, C.C.; Liu, W.C.; Lai, W.C.; Tsai, Y.C.; Chiang, M.Y.; Wu, Y.C.; Chang, F.R. Kuroshines A and B, new alkaloids from Zoanthus kuroshio. Tetrahedron Lett., 2014, 55(39), 5369-5372.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.101]
[92]
Chen, K.H.; Dai, C.F.; Hwang, T.L.; Sung, P.J. 5-(6-Hydroxy-2, 5, 7, 8-tetramethylchroman-2-yl)-2-methyl-pentanoic Acid Methyl Ester. Molbank, 2014, 2, M822.
[http://dx.doi.org/10.3390/M822]
[93]
Chen, K.H.; Dai, C.F.; Hwang, T.L.; Chen, C.Y.; Li, J.J.; Chen, J.J.; Wu, Y.C.; Sheu, J.H.; Wang, W.H.; Sung, P.J. Discovery of novel diterpenoids from Sinularia arborea. Mar. Drugs, 2014, 12(1), 385-393.
[http://dx.doi.org/10.3390/md12010385] [PMID: 24445307]
[94]
Cuong, N.X.; Thao, N.P.; Luyen, B.T.; Ngan, N.T.; Thuy, D.T.; Song, S.B.; Nam, N.H.; Kiem, P.V.; Kim, Y.H.; Minh, C.V. Cembranoid diterpenes from the soft coral Lobophytum crassum and their anti-inflammatory activities. Chem. Pharm. Bull. (Tokyo), 2014, 62(2), 203-208.
[http://dx.doi.org/10.1248/cpb.c13-00805] [PMID: 24492591]
[95]
Chang, Y.C.; Hwang, T.L.; Chao, C.H.; Sung, P.J. New marine sterols from a Gorgonian pinnigorgia sp. Molecules, 2017, 22(3), 393.
[http://dx.doi.org/10.3390/molecules22030393] [PMID: 28273821]
[96]
Sharp, J.H.; Winson, M.K.; Porter, J.S. Bryozoan metabolites: An ecological perspective. Nat. Prod. Rep., 2007, 24(4), 659-673.
[http://dx.doi.org/10.1039/b617546e] [PMID: 17653353]
[97]
Patiño, C.L.P.; Muniain, C.; Knott, M.E.; Puricelli, L.; Palermo, J.A. Bromopyrrole alkaloids isolated from the Patagonian bryozoan Aspidostoma giganteum. J. Nat. Prod., 2014, 77(5), 1170-1178.
[http://dx.doi.org/10.1021/np500012y] [PMID: 24824796]
[98]
Yu, H.B.; Yang, F.; Li, Y.Y.; Gan, J.H.; Jiao, W.H.; Lin, H.W. Cytotoxic bryostatin derivatives from the South China Sea bryozoan Bugula neritina. J. Nat. Prod., 2015, 78(5), 1169-1173.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00081] [PMID: 25932671]
[99]
Tian, X.R.; Tang, H.F.; Li, Y.S.; Lin, H.W.; Fan, X.P. Feng, J.T.; Zhang, X. New 3β, 6β-dihydroxy and 3β, 5α, 6β-trihydroxy sterols from marine bryozoan Bugula neritina in South China Sea and their cytotoxicity. Phytochem. Lett., 2014, 9, 1-6.
[http://dx.doi.org/10.1016/j.phytol.2014.03.010]
[100]
Wang, J.; Prinsep, M.R.; Gordon, D.P.; Page, M.J.; Copp, B.R. Isolation and stereospecific synthesis of janolusimide B from a New Zealand collection of the bryozoan Bugula flabellata. J. Nat. Prod., 2015, 78(3), 530-533.
[http://dx.doi.org/10.1021/np500752y] [PMID: 25494238]
[101]
Tian, X.R.; Gao, Y.Q.; Tian, X.L.; Li, J.; Tang, H.F.; Li, Y.S.; Lin, H.W.; Ma, Z.Q. New cytotoxic secondary metabolites from marine bryozoan Cryptosula pallasiana. Mar. Drugs, 2017, 15(4), 120.
[http://dx.doi.org/10.3390/md15040120] [PMID: 28406457]
[102]
Romanenko, L.A.; Uchino, M.; Kalinovskaya, N.I.; Mikhailov, V.V. Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities. Microbiol. Res., 2008, 163(6), 633-644.
[http://dx.doi.org/10.1016/j.micres.2006.10.001] [PMID: 19216104]
[103]
Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood), 2008, 233(6), 674-688.
[http://dx.doi.org/10.3181/0711-MR-311] [PMID: 18408140]
[104]
Benkendorff, K. Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. Biol. Rev. Camb. Philos. Soc., 2010, 85(4), 757-775.
[http://dx.doi.org/10.1111/j.1469-185X.2010.00124.x] [PMID: 20105155]
[105]
Eswar, A.; Ramamoorthy, K. In-vitro antibacterial activity and brine shrimp selected three marine mollusks from vellar estuary. Parangipettai. Int. J. Curr. Res., 2014, 6, 9075-9078.
[106]
Hou, Y.; Shavandi, A.; Carne, A.; Bekhit, A.A.; Ng, T.B.; Cheung, R.C.; Bekhit, A.E. Marine shells: Potential opportunities for extraction of functional and health-promoting materials. Crit. Rev. Environ. Sci. Technol., 2016, 46(11-12), 1047-1116.
[http://dx.doi.org/10.1080/10643389.2016.1202669]
[107]
Karthikeyan, S.C.; Velmurugan, S.; Donio, M.B.; Michaelbabu, M.; Citarasu, T. Studies on the antimicrobial potential and structural characterization of fatty acids extracted from Sydney rock oyster Saccostrea glomerata. Ann. Clin. Microbiol. Antimicrob., 2014, 13(1), 332.
[http://dx.doi.org/10.1186/s12941-014-0057-x] [PMID: 25599648]
[108]
Ciavatta, M.L.; Devi, P.; Carbone, M.; Mathieu, V.; Kiss, R.; Casapullo, A.; Gavagnin, M. Kahalalide F analogues from the mucous secretion of Indian sacoglossan mollusc Elysia ornata. Tetrahedron, 2016, 72(5), 625-631.
[http://dx.doi.org/10.1016/j.tet.2015.12.003]
[109]
Joy, M.; Chakraborty, K. First report of two new antioxidative meroterpeno 2H-pyranoids from short-necked yellow-foot clam Paphia malabarica (family: Veneridae) with bioactivity against pro-inflammatory cyclooxygenases and lipoxygenase. Nat. Prod. Res., 2017, 31(6), 615-625.
[http://dx.doi.org/10.1080/14786419.2016.1209670] [PMID: 27471883]
[110]
Joy, M.; Chakraborty, K.; Raola, V.K. New sterols with anti-inflammatory potentials against cyclooxygenase-2 and 5-lipoxygenase from Paphia malabarica. Nat. Prod. Res., 2017, 31(11), 1286-1298.
[http://dx.doi.org/10.1080/14786419.2016.1242001] [PMID: 27736157]
[111]
Bertanha, C.S.; Januário, A.H.; Alvarenga, T.A.; Pimenta, L.P.; Silva, M.L.; Cunha, W.R.; Pauletti, P.M. Quinone and hydroquinone metabolites from the ascidians of the genus Aplidium. Mar. Drugs, 2014, 12(6), 3608-3633.
[http://dx.doi.org/10.3390/md12063608] [PMID: 24927227]
[112]
Mohamed, G.A.; Ibrahim, S.R.; Badr, J.M.; Youssef, D.T. Didemnaketals D and E, bioactive terpenoids from a Red Sea ascidian Didemnum species. Tetrahedron, 2014, 70(1), 35-40.
[http://dx.doi.org/10.1016/j.tet.2013.11.057]
[113]
Ibrahim, S.R.; Mohamed, G.A.; Shaala, L.A.; Youssef, D.T.; Gab-Alla, A.A. Didemnacerides A and B: two new glycerides from Red Sea ascidian Didemnum species. Nat. Prod. Res., 2014, 28(19), 1591-1597.
[http://dx.doi.org/10.1080/14786419.2014.927874] [PMID: 24938879]
[114]
Youssef, D.T.; Mohamed, G.A.; Shaala, L.A.; Badr, J.M.; Bamanie, F.H.; Ibrahim, S.R. New purine alkaloids from the Red Sea marine tunicate Symplegma rubra. Phytochem. Lett., 2015, 13, 212-217.
[http://dx.doi.org/10.1016/j.phytol.2015.06.012]
[115]
Smitha, D.; Kumar, M.M.; Ramana, H.; Rao, D.V. Rubrolide R: a new furanone metabolite from the ascidian Synoicum of the Indian Ocean. Nat. Prod. Res., 2014, 28(1), 12-17.
[http://dx.doi.org/10.1080/14786419.2013.827194] [PMID: 23962161]
[116]
Won, T.H.; You, M.; Lee, S.H.; Rho, B.J.; Oh, D.C.; Oh, K.B.; Shin, J. Amino alcohols from the ascidian Pseudodistoma sp. Mar. Drugs, 2014, 12(6), 3754-3769.
[http://dx.doi.org/10.3390/md12063754] [PMID: 24962272]
[117]
Shaala, L.A.; Youssef, D.T.; Ibrahim, S.R.; Mohamed, G.A.; Badr, J.M.; Risinger, A.L.; Mooberry, S.L. Didemnaketals f and g, new bioactive spiroketals from a red sea ascidian didemnum species. Mar. Drugs, 2014, 12(9), 5021-5034.
[http://dx.doi.org/10.3390/md12095021] [PMID: 25257787]
[118]
Li, C.; Blencke, H.M.; Haug, T.; Stensvåg, K. Antimicrobial peptides in echinoderm host defense. Dev. Comp. Immunol., 2015, 49(1), 190-197.
[http://dx.doi.org/10.1016/j.dci.2014.11.002] [PMID: 25445901]
[119]
Smith, L.C.; Ghosh, J.; Buckley, K.M.; Clow, L.A.; Dheilly, N.M.; Haug, T.; Henson, J.H.; Li, C.; Lun, C.M.; Majeske, A.J.; Matranga, V. Echinoderm immunity. In: nvertebrate Immunity; Springer : US, 2010; pp. 260-301.
[http://dx.doi.org/10.1007/978-1-4419-8059-5_14]
[120]
Guilhelmelli, F.; Vilela, N.; Albuquerque, P. Derengowski, Lda.S.; Silva-Pereira, I.; Kyaw, C.M. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol., 2013, 4, 353.
[http://dx.doi.org/10.3389/fmicb.2013.00353] [PMID: 24367355]
[121]
Kiani, N.; Heidari, B.; Rassa, M.; Kadkhodazadeh, M.; Heidari, B. Antibacterial activity of the body wall extracts of sea cucumber (Invertebrata; Echinodermata) on infectious oral streptococci. J. Basic Clin. Physiol. Pharmacol., 2014, 25(4), 1-7.
[http://dx.doi.org/10.1515/jbcpp-2013-0010] [PMID: 24468613]
[122]
Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[123]
Mashjoor, S.; Yousefzadi, M. Holothurians antifungal and antibacterial activity to human pathogens in the Persian Gulf. J. Mycol. Med., 2017, 27(1), 46-56.
[http://dx.doi.org/10.1016/j.mycmed.2016.08.008] [PMID: 27641487]
[124]
Kazemi, S.; Heidari, B.; Rassa, M. Antibacterial and hemolytic effects of aqueous and organic extracts from different tissues of sea urchin Echinometra mathaei on pathogenic streptococci. Int. J. Aquac. Fish Sci., 2016, 8(4), 299-308.
[http://dx.doi.org/10.1007/s40071-016-0143-0]
[125]
Afzali, M.; Baharara, J.; Nezhad Shahrokhabadi, K.; Amini, E. Evaluation of the cytotoxic effect of the brittle star (Ophiocoma erinaceus) dichloromethane extract and doxorubicin on EL4 cell line. Iran. J. Pharm. Res., 2017, 16(1)(Suppl.), 216-226.
[PMID: 29844793]
[126]
Baharara, J.; Amini, E.; Namvar, F. Evaluation of the anti-proliferative effects of Ophiocoma erinaceus methanol extract against human cervical cancer cells. Avicenna J. Med. Biotechnol., 2016, 8(1), 29-35.
[PMID: 26855733]
[127]
Wätjen, W.; Ebada, S.S.; Bergermann, A.; Chovolou, Y.; Totzke, F.; Kubbutat, M.H.; Lin, W.; Proksch, P. Cytotoxic effects of the anthraquinone derivatives 1′-deoxyrhodopti, lometrin and (S)-(-)-rhodoptilometrin isolated from the marine echinoderm Comanthus sp. Arch. Toxicol., 2016, 1-11.
[PMID: 27473261]
[128]
Kalimuthu, S.; Venkatesan, J.; Kim, S.K. Marine derived bioactive compounds for breast and prostate cancer treatment: A review. Curr. Bioact. Compd., 2014, 10(1), 62-74.
[http://dx.doi.org/10.2174/1573407210666140327212945]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy