摘要
自噬是一种保守的、受调控的细胞过程,用于降解异常蛋白质和破坏细胞器。文献报道自噬失调与糖尿病的发病过程密切相关,如胰腺β细胞功能受损、外周胰岛素抵抗、糖尿病并发症等。新出现的证据表明,天然产品可能通过调节自噬而具有抗糖尿病活性。本文综述了通过调节自噬作用而产生的针对糖尿病发病机制的天然产物,并强调了其可能的作用机制,为糖尿病的治疗提供了潜在的药物选择或治疗方法。
关键词: 自噬,糖尿病,胰岛素抵抗,天然产物,糖尿病并发症,发病机制。
图形摘要
[1]
Zhou B, Lu Y, Hajifathalian K, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016; 387(10027): 1513-30.
[2]
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017; 23(7): 804-14.
[3]
Baron A, Brechtel G, Wallace P, Edelman S. Rates and tissue sites of non-insulin-and insulin-mediated glucose uptake in humans. Am J Physiol-Endoc M 1988; 255(6): E769-4.
[4]
Carnagarin R, Dharmarajan AM, Dass CR. Molecular aspects of glucose homeostasis in skeletal muscle--A focus on the molecular mechanisms of insulin resistance. Mol Cell Endocrinol 2015; 417(C): 52-62.
[5]
Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. BioMed Res Int 2010; 2010(1): 476279.
[6]
Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes 2003; 111(3): 121-4.
[7]
Capurso C, Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul Pharmacol 2012; 57(2-4): 91-7.
[8]
Krentz AJ, Clough G, Byrne CD. Interactions between microvascular and macrovascular disease in diabetes: pathophysiology and therapeutic implications. Diabetes Obes Metab 2007; 9(6): 781-91.
[9]
Kim F, Pham M, Maloney E, et al. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol 2008; 28(11): 1982-8.
[10]
Kosackaa J, Kerna M, Klötingab N, et al. Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Mol Cell Endocrinol 2015; 49(C): 21-32.
[11]
Gonzalez CD, Lee MS, Marchetti P, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 2011; 7(1): 2-11.
[12]
Barlow AD, Thomas DC. Autophagy in diabetes: β-cell dysfunction, insulin resistance, and complications. DNA Cell Biol 2015; 34(4): 252-60.
[13]
Rovira Llopis S, Díaz Morales N, Bañuls C, et al. Is autophagy altered in the leukocytes of type 2 diabetic patients? Antioxid Redox Signal 2015; 23(13): 1050-6.
[14]
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27: 107-32.
[17]
Codogno P, Meijer AJ. Autophagy: a potential link between obesity and insulin resistance. Cell Metab 2010; 11(6): 449-51.
[19]
Cahova M. In Regulation of autophagy in insulin resistance and type 2 diabetes Autophagy. Elsevier Inc 2015; Vol. 5: pp. 213-35.
[20]
Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass. Cell Metab 2009; 10(6): 507-15.
[21]
Kim KH, Jeong YT, Oh H, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 2013; 19(1): 83-92.
[22]
Liu X, Niu Y, Yuan H, Huang J, Fu L. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism 2015; 64(6): 658-65.
[23]
Dagon Y, Mantzoros C, Kim YB. Exercising insulin sensitivity: AMPK turns on autophagy! Metabolism 2015; 64(6): 655-7.
[24]
Li H, Liu S, Yuan H, Niu Y, Fu L. Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes. Exp Cell Res 2017; 354(1): 18-24.
[25]
He C, Bassik MC, Moresi V, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012; 481(7382): 511-5.
[26]
Lira VA, Okutsu M, Zhang M, et al. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J 2013; 27: 4184-93.
[27]
Yan J, Feng Z, Liu J, et al. Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto–Kakizaki (GK) rats: ameliorating effects of (−)-epigallocatechin-3-gallate. J Nutr Biochem 2012; 23(7): 716-24.
[28]
Kruse R, Vind BF, Petersson SJ, Kristensen JM, Højlund K. Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes. Diabetologia 2015; 58(9): 2087-95.
[29]
Baerga R, Zhang Y, Chen PH, Goldman S, Jin S. Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 2009; 5(8): 1118-30.
[30]
Singh R, Xiang Y, Wang Y, et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 2009; 119(11): 3329-39.
[31]
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 2009; 106(47): 19860-5.
[32]
Öst A, Svensson K, Ruishalme I, et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16: 235-46.
[33]
Zhou L, Zhang J, Fang Q, et al. Autophagy-mediated insulin receptor down-regulation contributes to endoplasmic reticulum stress-induced insulin resistance. Mol Pharmacol 2009; 76(3): 596-603.
[34]
Dali-Youcef N, Mecili M, Ricci R, Andrès E. Metabolic inflammation: connecting obesity and insulin resistance. Ann Med 2013; 45(3): 242-53.
[35]
Jansen H, Van Essen P, Koenen T, et al. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology 2012; 153(12): 5866-74.
[36]
Ma D, Molusky Matthew M, Song JR, et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol Endocrinol 2013; 27: 1643-54.
[37]
Yang L, Li P, Fu SN, Calay ES, Hotamisligil GS. Defective Hepatic Autophagy in Obesity Promotes ER Stress and Causes Insulin Resistance. Cell Metab 2010; 11(6): 467-78.
[38]
Liu HY, Han J, Cao SY, et al. Hepatic Autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 2009; 284(45): 31484-92.
[39]
Liu HY, Yehudashnaidman E, Hong T, et al. Prolonged exposure to insulin suppresses mitochondrial production in primary hepatocytes. J Biol Chem 2009; 284(21): 14087-95.
[40]
Yan H, Gao Y, Zhang Y. Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease. Mol Med Rep 2017; 15(1): 180-6.
[41]
Kim KH, Lee MS. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism. Rev Endocr Metab Disord 2014; 15(1): 11-20.
[42]
El Ouaamari A, Kawamori D, Dirice E, et al. Liver-derived systemic factors drive β cell hyperplasia in insulin-resistant states. Cell Reports 2013; 3(3): 401-10.
[43]
Kasuga M. Insulin resistance and pancreatic β cell failure. J Clin Invest 2006; 116(7): 1756-60.
[44]
Masini M, Bugliani M, Lupi R, et al. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009; 52(6): 1083-6.
[45]
Riahi Y, Wikstrom JD, Bachar-Wikstrom E, et al. Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia 2016; 59(7): 1480-91.
[46]
Jung HS, Chung KW, Kim JW, et al. Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab 2008; 8(2): 318-24.
[47]
Ebato C, Uchida T, Arakawa M, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008; 8(4): 325-32.
[48]
Leonardi O, Mints G, Hussain MA. Beta-cell apoptosis in the pathogenesis of human type 2 diabetes mellitus. Eur J Endocrinol 2003; 149(2): 99-102.
[49]
Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 2014; 124(8): 3489-500.
[50]
Jurgens CA, Toukatly MN, Fligner CL, et al. β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 2011; 178(6): 2632-40.
[51]
Shigihara N, Fukunaka A, Hara A, et al. Human IAPP–induced pancreatic β cell toxicity and its regulation by autophagy. J Clin Invest 2014; 124(8): 3634-44.
[52]
Kim J, Cheon H, Jeong YT, et al. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J Clin Invest 2014; 124(8): 3311-24.
[53]
Song YM, Song SO, You YH, et al. Glycated albumin causes pancreatic β-cells dysfunction through autophagy dysfunction. Endocrinology 2013; 154(8): 2626-39.
[54]
Lim YM, Lim H, Hur KY, et al. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun 2014; 5(5): 4934.
[55]
Yang D, Livingston MJ, Liu Z, et al. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 2018; 75(4): 669-88.
[56]
Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444(71117): 337-42.
[57]
Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105(9): 3374-9.
[58]
Zhang Y, Chen M, Zhou Y, et al. Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway. Mol Nutr Food Res 2015; 59(8): 1443-57.
[59]
Wang B, Yang Q, Sun YY, Xing YF, et al. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med 2014; 18(8): 1599-611.
[60]
Xu K, Liu XF, Ke ZQ, et al. Resveratrol Modulates Apoptosis and Autophagy Induced by High Glucose and Palmitate in Cardiac Cells. Cell Physiol Biochem 2018; 46(5): 2031-40.
[61]
Zhang M, Wang S, Cheng Z, et al. Polydatin ameliorates diabetic cardiomyopathy via Sirt3 activation. Biochem Biophys Res Commun 2017; 493(3): 1280-7.
[62]
Li L, Hai J, Li Z, et al. Resveratrol modulates autophagy and NF-κB activity in a murine model for treating non-alcoholic fatty liver disease. Food Chem Toxicol 2014; 63: 166-73.
[63]
Liu J, Tang Y, Feng Z, Liu J, Liu J, Long J. (–)-Epigallocatechin-3-gallate attenuated myocardial mitochondrial dysfunction and autophagy in diabetic Goto–Kakizaki rats. Free Radic Res 2014; 48(8): 898-906.
[64]
Liu J, Tang Y, Feng Z, Hou C, et al. Acetylated FoxO1 mediates high-glucose induced autophagy in H9c2 cardiomyoblasts: Regulation by a polyphenol-(−)-epigallocatechin-3-gallate. Metabolism 2014; 63(10): 1314-23.
[65]
Zhou J, Farah BL, Sinha RA, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS One 2014; 9(5): e87161.
[66]
Kim HS, Montana V, Jang HJ, Parpura V, Kim Ja. Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells. J Biol Chem 2013; 288(31): 22693-705.
[67]
Nabavi SF, Thiagarajan R, Rastrelli L, et al. Curcumin: A natural product for diabetes and its complications. Curr Top Med Chem 2015; 15(23): 2445-55.
[68]
Ye M, Qiu H, Cao Y, et al. Curcumin improves palmitate-induced insulin resistance in human umbilical vein endothelial cells by maintaining proteostasis in endoplasmic reticulum. Front Pharmacol 2017; 8: 148.
[69]
Han J, Pan X, Xu Y, et al. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 2012; 8(5): 812-25.
[70]
Guo S, Long M, Li X, et al. Curcumin activates autophagy and attenuates oxidative damage in EA.hy926 cells via the Akt/mTOR pathway. Mol Med Rep 2016; 13(3): 2187-93.
[71]
Krause J, Rumberger JM. Curcumin is a direct inhibitor of glucose transport in adipocytes. Phytomedicine 2014; 21(2): 118-22.
[72]
Zhang D, Zhang Y, Ye M, et al. Interference with Akt signaling pathway contributes curcumin-induced adipocyte insulin resistance. Mol Cell Endocrinol 2016; 429(C): 1-9.
[73]
Murotomi K, Umeno A, Yasunaga M, et al. Oleuropein-rich diet attenuates hyperglycemia and impaired glucose tolerance in type 2 diabetes model mouse. J Agric Food Chem 2015; 63(30): 6715-22.
[74]
Park S, Choi Y, Um SJ, Yoon SK, Park T. Oleuropein attenuates hepatic steatosis induced by high-fat diet in mice. J Hepatol 2011; 54(5): 984-93.
[75]
de Bock M, Derraik JG, Brennan CM, et al. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PLoS One 2013; 8(3): e57622.
[76]
Rigacci S, Miceli C, Nediani C, et al. Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight. Oncotarget 2015; 6(34): 35344-57.
[77]
Mollace V, Sacco I, Janda E, et al. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: from animal models to human studies. Fitoterapia 2011; 82(3): 309-16.
[78]
Parafati M, Lascala A, Morittu VM, et al. Bergamot polyphenol fraction prevents nonalcoholic fatty liver disease via stimulation of lipophagy in cafeteria diet-induced rat model of metabolic syndrome. J Nutr Biochem 2015; 26(9): 938-48.
[79]
Ichiki H, Miura T, Kubo M, et al. New antidiabetic compounds, mangiferin and its glucoside. Biol Pharm Bull 1998; 21(12): 1389-90.
[80]
Wang H, Zhu Y, Wang L, et al. Mangiferin ameliorates fatty liver via modulation of autophagy and inflammation in high-fat-diet induced mice. Biomed Pharmacother 2017; 96: 328-35.
[81]
Wang X, Gao L, Lin H, et al. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli. Eur J Pharmacol 2018; 824: 170-8.
[82]
Qiang GF, Yang XY, Shi LL, et al. Antidiabetic effect of salvianolic acid A on diabetic animal models via ampk activation and mitochondrial regulation. Cell Physiol Biochem 2015; 36: 395-408.
[83]
Hou B, Qiang G, Zhao Y, et al. Salvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling. Cell Physiol Biochem 2017; 44(6): 2378-94.
[85]
Kawser Hossain M, Abdal Dayem A, Han J, et al. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 2016; 17(4): 569.
[86]
George VC, Dellaire G, Rupasinghe HV. Plant flavonoids in cancer chemoprevention: role in genome stability. J Nutr Biochem 2017; 45: 1-14.
[87]
Shi LY, Zhang T, Zhou Y, et al. Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1α-Sirt3 signaling pathway. Endocrine 2015; 50(2): 378-89.
[88]
Shi LY, Zhang T, Liang XY, et al. Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway. Mol Cell Endocrinol 2015; 409(C): 92-102.
[89]
Kong X, Wang R, Xue Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 2010; 5(7): e11707.
[90]
Wu B, Lin J, Luo J, et al. Dihydromyricetin protects against diabetic cardiomyopathy in streptozotocin-induced diabetic mice. BioMed Res Int 2017; 2017: 1-13.
[91]
Le L, Jiang B, Wan W, et al. Metabolomics reveals the protective of Dihydromyricetin on glucose homeostasis by enhancing insulin sensitivity. Sci Rep 2016; 6: 36184.
[92]
Xia J, Guo SW, Fang T, et al. Dihydromyricetin induces autophagy in HepG2 cells involved in inhibition of mTOR and regulating its upstream pathways. Food Chem Toxicol 2014; 66: 7-13.
[93]
Liang X, Zhang T, Shi L, et al. Ampelopsin protects endothelial cells from hyperglycemia-induced oxidative damage by inducing autophagy via the AMPK signaling pathway. Biofactors 2015; 41(6): 463-75.
[94]
Stefek M, Karasu C. Eye Lens in Aging and Diabetes: Effect of Quercetin. Rejuv Res 2011; 14(5): 525-34.
[95]
Chen S, Jiang H, Wu X, Fang J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediators Inflamm 2016; 1-5.
[96]
Dai X, Ding Y, Zhang Z, Cai X, Bao L, Li Y. Quercetin but not quercitrin ameliorates tumor necrosis factor-alpha-induced insulin resistance in C2C12 skeletal muscle cells. Biol Pharm Bull 2013; 36(5): 788-95.
[97]
Vidyashankar S, Varma RS, Patki PS. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicol In Vitro 2013; 27(2): 945-53.
[98]
Qu L, Liang X, Gu B, Liu W. Quercetin alleviates high glucose-induced Schwann cell damage by autophagy. Neural Regen Res 2014; 9(12): 1195-203.
[99]
Zang Y, Zhang L, Igarashi K, Yu C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct 2015; 6(3): 834-41.
[100]
Varshney R, Varshney R, Mishra R, et al. Kaempferol alleviates palmitic acid-induced lipid stores, endoplasmic reticulum stress and pancreatic β-cell dysfunction through AMPK/mTOR-mediated lipophagy. J Nutr Biochem 2018; 57: 212-27.
[101]
Varshney R, Gupta S, Roy P. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway. Mol Cell Endocrinol 2017; 448: 1-20.
[102]
Turrini E, Ferruzzi L, Fimognari C. Possible effects of dietary anthocyanins on diabetes and insulin resistance. Curr Drug Targets 2017; 18(6): 629-40.
[103]
Yan F, Zheng X. Anthocyanin-rich mulberry fruit improves insulin resistance and protects hepatocytes against oxidative stress during hyperglycemia by regulating AMPK/ACC/mTOR pathway. J Funct Foods 2017; 30: 270-81.
[104]
Peng Fu, Du Qiaohui, Peng Cheng, et al. A Review: The Pharmacology
of Isoliquiritigenin. Phytother Res 2015; 29(7): 969-77.
[105]
Yerra VG, Kalvala AK, Kumar A. Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy. J Nutr Biochem 2017; 47: 41-52.
[106]
Putta S, Sastry Yarla N, Kumar Kilari E, et al. Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr Top Med Chem 2016; 16(23): 2532-42.
[107]
Kunkel SD, Elmore CJ, Bongers KS, et al. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS One 2012; 7(6): e39332.
[108]
Jia YY, Kim S, Kim J, et al. Ursolic acid improves lipid and glucose metabolism in high-fat-fed C57BL/6J mice by activating peroxisome proliferator-activated receptor alpha and hepatic autophagy. Mol Nutr Food Res 2015; 59(2): 344-54.
[109]
Meng F, Ning H, Sun Z, et al. Ursolic acid protects hepatocytes against lipotoxicity through activating autophagy via an AMPK pathway. J Funct Foods 2015; 17: 172-82.
[110]
Lu X, Fan Q, Xu L, et al. Ursolic acid attenuates diabetic mesangial cell injury through the up-regulation of autophagy via miRNA-21/PTEN/Akt/mTOR suppression. PLoS One 2015; 10(2): e0117400.
[111]
Huang Q, Wang T, Yang L, Wang HY. Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of Sirt1 and activation of AMPK. Int J Mol Sci 2017; 18(5): 1063.
[112]
Fan Y, Wang N, Rocchi A, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy 2017; 13(1): 41-56.
[113]
Lim SW, Jin L, Luo K, et al. Ginseng extract reduces tacrolimus-induced oxidative stress by modulating autophagy in pancreatic beta cells. Lab Invest 2017; 97(11): 1271.
[114]
Jiang H, Ma Y, Yan J, et al. Geniposide promotes autophagy to inhibit insulin resistance in HepG2 cells via P62/NF-κB/GLUT-4. Mol Med Rep 2017; 16(5): 7237-44.
[115]
Guo H, Wang Y, Zhang X, et al. Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci Rep 2017; 7(1): 6852.
[116]
Feng L, Jia XB, Wang CF, Wang G, Wiu Y, Tan W. Autophagy revulsive for diabetic vascular complication treatment and application in medicine. China Patent 106420770 (A), February 22 2017.
[117]
Law BY, Wang M, Ma DL, et al. Alisol B, a novel inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, induces autophagy, endoplasmic reticulum stress, and apoptosis. Mol Cancer Ther 2010; 9(3): 718-30.
[118]
Gao Q, Shen WW, Qin WS, et al. Treatment of db/db diabetic mice with triptolide: a novel therapy for diabetic nephropathy. Nephrol Dial Transplant 2010; 25(11): 3539-47.
[119]
Li XY, Wang SS, Han Z, et al. Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway. Mol Ther Nucleic Acids 2017; 9: 48-56.
[120]
Chen J, Zhao D, Zhu M, et al. Paeoniflorin ameliorates AGEs-induced mesangial cell injury through inhibiting RAGE/ mTOR/autophagy pathway. Biomed Pharmacother 2017; 89: 1362-9.
[121]
Zeng YC, Peng LS, Zou L, et al. Protective effect and mechanism of lycopene on endothelial progenitor cells (EPCs) from type 2 diabetes mellitus rats. Biomed Pharmacother 2017; 92: 86-94.
[122]
Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr Polym 2016; 148: 86-97.
[123]
Li X, Gong H, Yang S, Yang L, Fan Y, Zhou Y. Pectic bee pollen polysaccharide from Rosa rugosa alleviates diet-induced hepatic steatosis and insulin resistance via induction of AMPK/mTOR-mediated autophagy. Molecules 2017; 22(5): 699.
[124]
Zhu X, Hu S, Zhu L, Ding J, Zhou Y, Li G. Effects of Lycium barbarum polysaccharides on oxidative stress in hyperlipidemic mice following chronic composite psychological stress intervention. Mol Med Rep 2015; 11(5): 3445-50.
[125]
Xiao J, Xing F, Huo J, et al. Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model. Sci Rep 2014; 4: 5587.
[126]
Liu SY, Chen L, Li XC, Hu QK, He LJ. Lycium barbarum polysaccharide protects diabetic peripheral neuropathy by enhancing autophagy via mTOR/p70S6K inhibition in Streptozotocin-induced diabetic rats. J Chem Neuroanat 2017; 89.
[127]
Li Y, Wang Z, Feng Y, Yuan Q. Improving trehalose synthase activity by adding the C-terminal domain of trehalose synthase from Thermus thermophilus. Bioresour Technol 2017; 245: 1749-56.
[128]
Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem 2007; 282(8): 5641-52.
[129]
Lin CF, Kuo YT, Chen TY, Chien CT. Quercetin-rich Guava (Psidium guajava) juice in combination with trehalose reduces autophagy, apoptosis and pyroptosis formation in the kidney and pancreas of type II diabetic rats. Molecules 2016; 21(3): 334.
[130]
Wang Q, Ren J. mTOR-Independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: Role of p38 MAPK and Foxo1. Pharmacol Res 2016; 111: 357-73.
[131]
Wang BZ, Zheng JT. Dietary composition of guava fruit with trehalose
for improvement of type ii diabetes and use thereof Taiwan
Patent 20150109542, October 1 2016.
[132]
Zhang Y, Li X, Zou D, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 2008; 93(7): 2559-65.
[133]
Deng Y, Xu J, Zhang X, et al. Berberine attenuates autophagy in adipocytes by targeting BECN1. Autophagy 2014; 10(10): 1776-86.
[134]
He Q, Mei D, Sha S, Fan S, Wang L, Dong M. ERK-dependent mTOR pathway is involved in berberine-induced autophagy in hepatic steatosis. J Mol Endocrinol 2016; 57(4): 251-60.
[135]
Sun YX, Xia MF, Yan HM, et al. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br J Pharmacol 2018; 175(2): 374-87.
[136]
Jin YL, Liu SP, Ma QS, Xiao D, Chen L. Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol 2017; 794: 106-14.
[137]
Vandanmagsar B, Youm Y-H, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011; 17(2): 179-88.
[138]
Zhou H, Feng LL, Xu F, et al. Berberine inhibits palmitate-induced NLRP3 inflammasome activation by triggering autophagy in macrophages: A new mechanism linking berberine to insulin resistance improvement. Biomed Pharmacother 2017; 89: 864-74.