General Review Article

人体肠道真菌和真菌代谢物的研究

卷 20, 期 2, 2019

页: [232 - 240] 页: 9

弟呕挨: 10.2174/1389450119666180724125020

价格: $65

摘要

背景:越来越多的证据表明微生物在宿主的稳态过程中起着重要的作用。到目前为止,研究人员主要集中在细菌微生物区系的作用上。然而,人类肠道是几种真菌的栖息地,产生大量的代谢产物。此外,各种食物和饮料中含有丰富的真菌及其代谢物。方法:检索PubMed和Google学者数据库,对真菌代谢产物、人类真菌群组成和真菌失调进行临床和临床前研究。结果:真菌代谢产物可作为信号分子发挥重要的生物学作用,包括营养、抗炎或抗菌作用。最后,研究表明肠道真菌成分的变化与人类健康之间存在关联。在肥胖症、肝炎和炎症性肠病中发现了真菌群组成的变化。结论:真菌和膳食真菌对哺乳动物体内稳态的影响可能包括益生菌和粪便移植治疗。此外,真菌衍生分子的抗菌作用可作为食品工业中常用抗菌剂和防腐剂的替代物。

关键词: 真菌群,真菌代谢物,益生菌,粪便移植,肠道。

图形摘要

[1]
Tomasova L, Konopelski P, Ufnal M. Gut bacteria and hydrogen sulfide: The new old players in circulatory system homeostasis. Molecules 2016; 11.
[2]
Yang T, Zubcevic J. Gut-brain axis in regulation of blood pressure. Front Physiol 2017; 8: 845.
[3]
Jaworska K, Huc T, Samborowska E, et al. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS One 2017; 12: e0189310.
[4]
Ufnal M, Pham K. The gut-blood barrier permeability-A new marker in cardiovascular and metabolic diseases? Med Hypotheses 2017; 98: 35-7.
[5]
Huc T, Nowinski A, Drapala A, Konopelski P, Ufnal M. Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol Res 2018; 130: 172-9.
[6]
Huc T, Konop M, Onyszkiewicz M, et al. Colonic indole, gut bacteria metabolite of tryptophan, increases portal blood pressure in rats. Am J Physiol Regul Integr Comp Physiol 2018; 315(4): R646-55.
[7]
Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome. Trends Microbiol 2013; 7: 334-41.
[8]
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 7285: 59-65.
[9]
Vesty A, Biswas K, Taylor MW, Gear K, Douglas RG. Evaluating the impact of DNA extraction method on the representation of human oral bacterial and fungal communities. PLoS One 2017; 1: e0169877.
[10]
Huseyin CE, Rubio RC, O’Sullivan O, Cotter PD, Scanlan PD. The fungal frontier: a comparative analysis of methods used in the study of the human gut mycobiome. Front Microbiol 2017; 8: 1432.
[11]
Witherden EA, Shoaie S, Hall RA, Moyes DL. The human mucosal mycobiome and fungal community interactions. J Fungi (Basel) 2017; 4.
[12]
Halwachs B, Madhusudhan N, Krause R, et al. Critical issues in mycobiota analysis. Front Microbiol 2017; 180.
[13]
Taylor TN, Osborn JM. The importance of fungi in shaping the paleoecosystem. Rev Palaeobot Palynol 1996; 3: 249-62.
[14]
Hibbett DS, Binder M, Bischoff JF, et al. A higher-level phylogenetic classification of the Fungi. Mycol Res 2007; 5: 509-47.
[15]
Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials--a mycologist’s perspective. Mycologia 2015; 6: 1057-73.
[16]
Schulze J, Sonnenborn U. Yeasts in the gut: from commensals to infectious agents. Dtsch Arztebl Int 2009; 51-52: 837-42.
[17]
Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 2013; 6: e66019.
[18]
Abdelfattah A, Wisniewski M, Droby S, Schena L. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Hortic Res 2016; 3: 16047.
[19]
Power RC, Salazar-García DC, Straus LG, Gonzalez Morales MR, Henry AG. Microremains from El Miron Cave human dental calculus suggest a mixed planteanimal subsistence economy during Magdalenian in North Iberia. J Archaeol Sci 2015; 60: 39-46.
[20]
Liu Y, Gong G, Xie L, et al. Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum. Mol Biotechnol 2010; 2: 101-9.
[21]
Curbete MM, Salgado HR. A critical review of the properties of fusidic acid and analytical methods for its determination. Crit Rev Anal Chem 2016; 4: 352-60.
[22]
Banani H, Marcet-Houben M, Ballester AR, et al. Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics 2016; 17: 19.
[23]
Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 2002; 5: 555-64.
[24]
Nicoletti R, Ciavatta ML, Buommino E, Tufano MA. Antitumor extrolites produced by Penicillium species 2008. 2: 1-23
[25]
Zhao J, Kim JE, Reed E, Li QQ. Molecular mechanism of antitumor activity of taxanes in lung cancer.[Review] Int J Oncol 2005; 1: 247-56.
[26]
Gbabe OF, Okwundu CI, Dedicoat M, Freeman EE. Treatment of severe or progressive Kaposi’s sarcoma in HIV-infected adults. Cochrane Database Syst Rev 2014; 9.
[27]
McGuire WP, Blessing JA, Moore D, Lentz SS, Photopulos G. Paclitaxel has moderate activity in squamous cervix cancer. A Gynecologic Oncology Group study. J Clin Oncol 1996; 3: 792-5.
[28]
Zhang YJ, Yang XQ, Zhang S, Humber RA, Xu J. Genomic analyses reveal low mitochondrial and high nuclear diversity in the cyclosporin-producing fungus Tolypocladium inflatum. Appl Microbiol Biotechnol 2017; 23-24: 8517-31.
[29]
Leung AY, Paul AG. Baeocystin and norbaeocystin: New analogs of psilocybin from Psilocybe baeocystis. J Pharm Sci 1968; 10: 1667-71.
[30]
Bowden K, Drysdale AC, Mogey GA. Constituents of Amanita muscaria. Nature 1965; 991: 1359-60.
[31]
Benjamin DR. Mushroom poisoning in infants and children: The Amanita pantherina/muscaria group. J Toxicol Clin Toxicol 1992; 1: 13-22.
[32]
Michelot D, Melendez-Howell LM. Amanita muscaria: Chemistry, biology, toxicology, and ethnomycology. Mycol Res 2003; 2: 131-46.
[33]
Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome 2017; 1: 153.
[34]
Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence 2017; 3: 352-8.
[35]
Gouba N, Raoult D, Drancourt M. Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations. PLoS One 2013; 3: e59474.
[36]
Suhr MJ, Banjara N, Hallen-Adams HE. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett Appl Microbiol 2016; 3: 209-15.
[37]
Schloss PD, Iverson KD, Petrosino JF, Schloss SJ. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome 2014; 2: 25.
[38]
Bliss JM, Basavegowda KP, Watson WJ, Sheikh AU, Ryan RM. Vertical and horizontal transmission of Candida albicans in very low birth weight infants using DNA fingerprinting techniques. Pediatr Infect Dis J 2008; 3: 231-5.
[39]
Mutschlechner W, Karall D, Hartmann C, et al. Mammary candidiasis: Molecular-based detection of Candida species in human milk samples. Eur J Clin Microbiol Infect Dis 2016; 8: 1309-13.
[40]
LaTuga MS, Ellis JC, Cotton CM, et al. Beyond bacteria: a study of the enteric microbial consortium in extremely low birth weight infants. PLoS One 2011; 12: e27858.
[41]
Nielsen JC, Grijseels S, Prigent S, et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat Microbiol 2017; 2: 17044.
[42]
Aharonowitz Y, Cohen G, Martin JF. Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 1992; 46: 461-95.
[43]
Richard JL. Some major mycotoxins and their mycotoxicoses--an overview. Int J Food Microbiol 2007; 1-2: 3-10.
[44]
Sougioultzis S, Simeonidis S, Bhaskar KR, et al. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappaB-mediated IL-8 gene expression. Biochem Biophys Res Commun 2006; 1: 69-76.
[45]
Czerucka D, Dahan S, Mograbi B, Rossi B, Rampal P. Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells. Infect Immun 2000; 10: 5998-6004.
[46]
Buts JP, De Keyser N, De Raedemaeker L. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr Res 1994; 4: 522-7.
[47]
Castagliuolo I, LaMont JT, Nikulasson ST, Pothoulakis C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect Immun 1996; 12: 5225-32.
[48]
Buts JP, Dekeyser N, Stilmant C, et al. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr Res 2006; 1: 24-9.
[49]
Lessard M, Dupuis M, Gagnon N, et al. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J Anim Sci 2009; 3: 922-34.
[50]
Gedek BR. Adherence of Escherichia coli serogroup O 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses 1999; 4: 261-4.
[51]
Schneider SM, Girard-Pipau F, Filippi J, et al. Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World J Gastroenterol 2005; 39: 6165-9.
[52]
Quintin J, Saeed S, Martens JHA, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 2012; 2: 223-32.
[53]
Cugini C, Calfee MW, Farrow JM, et al. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 2007; 4: 896-906.
[54]
Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial-fungal interactions. Nat Rev Microbiol 2010; 5: 340-9.
[55]
Joo JH, Jetten AM. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett 2010; 2: 123-35.
[56]
Rossignol T, Logue ME, Reynolds K, et al. Transcriptional response of Candida parapsilosis following exposure to farnesol. Antimicrob Agents Chemother 2007; 7: 2304-12.
[57]
Liu P, Luo L, Guo J, et al. Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. Mycologia 2010; 2: 311-8.
[58]
Machida K, Tanaka T. Farnesol-induced generation of reactive oxygen species dependent on mitochondrial transmembrane potential hyperpolarization mediated by F(0)F(1)-ATPase in yeast. FEBS Lett 1999; 1-2: 108-12.
[59]
Machida K, Tanaka T, Fujita K, Taniguchi M. Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae. J Bacteriol 1998; 17: 4460-5.
[60]
Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol 2008; 1: 47-62.
[61]
Lorek J, Pöggeler S, Weide MR, Breves R, Bockmühl DP. Influence of farnesol on the morphogenesis of Aspergillus niger. J Basic Microbiol 2008; 2: 99-103.
[62]
Smith MG, Des Etages SG, Snyder M. Microbial synergy via an ethanol-triggered pathway. Mol Cell Biol 2004; 9: 3874-84.
[63]
Martins M, Henriques M, Azeredo J, et al. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 2007; 12: 2429-36.
[64]
Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K. Phenethyl alcohol and tryptophol: Autoantibiotics produced by the fungus Candida albicans. Science 1969; 3863: 192-4.
[65]
Chen H, Fink GR. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 2006; 9: 1150-61.
[66]
Alem MA, Oteef MD, Flowers TH, Douglas LJ. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell 2006; 10: 1770-9.
[67]
Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci USA 2004; 14: 5048-52.
[68]
Sentheshanmuganathan S, Elsden SR. The mechanism of the formation of tyrosol by Saccharomyces cerevisiae. Biochem J 1958; 2: 210-8.
[69]
Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Łukaszewicz M. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One 2010; 8: e12050.
[70]
Noverr MC, Huffnagle GB. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 2004; 11: 6206-10.
[71]
Adnan S, Nelson JW, Ajami NJ, et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 2017; 2: 96-104.
[72]
Li X, Watanabe K, Kimura I. Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Front Immunol 2017; 8: 1882.
[73]
Zhao F, Feng J, Li J, et al. Alterations of the Gut Microbiota in Hashimoto’s Thyroiditis Patients. Thyroid 2018; 2: 175-86.
[74]
Schwarz E, Maukonen J, Hyytiäinen T, et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res 2017; 192: 398-403.
[75]
Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 2016; 7: 12015.
[76]
Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 2018; 1: 108-19.
[77]
Huc T, Jurkowska H, Wrobel M, et al. Colonic hydrogen sulfide produces portal hypertension and systemic hypotension in rats. Exp Biol Med (Maywood) 2018; 1: 96-106.
[78]
Konopelski P, Ufnal M. Indoles - gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr Drug Metab 2018; 19: 1-8.
[79]
Gouba N, Drancourt M. Digestive tract mycobiota: A source of infection. Med Mal Infect 2015; 1-2: 9-16.
[80]
Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012; 6086: 1314-7.
[81]
Jawhara S, Thuru X, Standaert-Vitse A, et al. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J Infect Dis 2008; 7: 972-80.
[82]
Chen Y, Chen Z, Guo R, et al. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis 2011; 4: 492-8.
[83]
Ott SJ, Kühbacher T, Musfeldt M, et al. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand J Gastroenterol 2008; 7: 831-41.
[84]
Li Q, Wang C, Tang C, et al. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol 2014; 6: 513-23.
[85]
Hoarau G, Mukherjee PK, Gower-Rousseau C, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial crohn’s disease. MBio 2016; 5: e01250-16.
[86]
Hager CL, Ghannoum MA. The mycobiome: Role in health and disease, and as a potential probiotic target in gastrointestinal disease. Dig Liver Dis 2017; 11: 1171-6.
[87]
Sokol H, Leducq V, Aschard H, et al. Fungal microbiota dysbiosis in IBD. Gut 2017; 6: 1039-48.
[88]
Walujkar SA, Kumbhare SV, Marathe NP, et al. Molecular profiling of mucosal tissue associated microbiota in patients manifesting acute exacerbations and remission stage of ulcerative colitis. World J Microbiol Biotechnol 2018; 6: 76.
[89]
Ott SJ, Plamondon S, Hart A, et al. Dynamics of the mucosa-associated flora in ulcerative colitis patients during remission and clinical relapse. J Clin Microbiol 2008; 10: 3510-3.
[90]
Awoyeni A, Olaniran O, Odetoyin B, et al. Isolation and evaluation of Candida species and their association with CD4+ T cells counts in HIV patients with diarrhoea. Afr Health Sci 2017; 2: 322-9.
[91]
Martín Relloso MJ, Sánchez-Fayos P, González Guirado A, Rico L, Porres JC. Colonic histoplasmosis in AIDS. Endoscopy 2005; 10: 1036.
[92]
Mar Rodríguez M, Pérez D, Javier Chaves F, et al. Obesity changes the human gut mycobiome. Sci Rep 2015; 5: 14600.
[93]
Seed PC. The human mycobiome. Cold Spring Harb Perspect Med 2014; 5: a019810.
[94]
Hold GL, Smith M, Grange C, et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World J Gastroenterol 2014; 5: 1192-210.
[95]
Yang AM, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 2017; 7: 2829-41.
[96]
Hill C, Guarner F, Reid G, et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 8: 506-14.
[97]
de Vrese M, Stegelmann A, Richter B, et al. Probiotics--compensation for lactase insufficiency. Am J Clin Nutr 2001; 2: 421-9.
[98]
Sazawal S, Hiremath G, Dhingra U, et al. Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect Dis 2006; 6: 374-82.
[99]
Allen SJ, Okoko B, Martinez E, Gregorio G, Dans LF. Probiotics for treating infectious diarrhoea. Cochrane Database Syst Rev 2004; 2: CD003048.
[100]
Allen SJ, Martinez EG, Gregorio GV, Dans LF. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev 2010; 11: CD003048.
[101]
Yuan F, Ni H, Asche CV, et al. Efficacy of Bifidobacterium infantis 35624 in patients with irritable bowel syndrome: A meta-analysis. Curr Med Res Opin 2017; 7: 1191-7.
[102]
Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: The efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 4: 389-400.
[103]
Lloyd-Lavery A, Rogers NK, Hatfield SJ, et al. What’s new in atopic eczema? An analysis of systematic reviews published in 2014. Part 2. Treatment and prevention. Clin Exp Dermatol 2017; 1: 3-7.
[104]
McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol 2006; 4: 812-22.
[105]
Hempel S, Newberry SJ, Maher AR, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 2012; 18: 1959-69.
[106]
McFarland LV. Evidence-based review of probiotics for antibiotic-associated diarrhea and Clostridium difficile infections. Anaerobe 2009; 6: 274-80.
[107]
Guarner F, Khan AG, Garisch J, et al. World Gastroenterology Organisation Global Guidelines: probiotics and prebiotics October 2011. J Clin Gastroenterol 2012; 6: 468-81.
[108]
Szajewska H, Konarska Z, Kołodziej M. Probiotic bacterial and fungal strains: Claims with evidence. Dig Dis 2016; 3: 251-9.
[109]
Czerucka D, Piche T, Rampal P. Review article: yeast as probiotics -- Saccharomyces boulardii. Aliment Pharmacol Ther 2007; 6: 767-78.
[110]
Fietto JL, Araújo RS, Valadão FN, et al. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Can J Microbiol 2004; 8: 615-21.
[111]
Pardo S, Galvagno MA, Cerrutti P. Studies of viability and vitality after freezing of the probiotic yeast Saccharomyces boulardii: physiological preconditioning effect. Rev Iberoam Micol 2009; 2: 155-60.
[112]
McFarland LV. Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med Infect Dis 2007; 2: 97-105.
[113]
Bisson JF, Hidalgo S, Rozan P, Messaoudi M. Preventive effects of different probiotic formulations on travelers’ diarrhea model in wistar rats: preventive effects of probiotics on TD. Dig Dis Sci 2010; 4: 911-9.
[114]
McFarland LV, Surawicz CM, Greenberg RN, et al. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 1994; 24: 1913-8.
[115]
Surawicz CM, McFarland LV, Greenberg RN, et al. The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis 2000; 4: 1012-7.
[116]
Saint-Marc T, Rossello-Prats L, Touraine JL. Efficacy of Saccharomyces boulardii in the treatment of diarrhea in AIDS. Ann Med Interne (Paris) 1991; 1: 64-5.
[117]
Besirbellioglu BA, Ulcay A, Can M, et al. Saccharomyces boulardii and infection due to Giardia lamblia. Scand J Infect Dis 2006; 6-7: 479-81.
[118]
Muñoz P, Bouza E, Cuenca-Estrella M, et al. Saccharomyces cerevisiae fungemia: an emerging infectious disease. Clin Infect Dis 2005; 11: 1625-34.
[119]
Chiaro TR, Soto R, Zac Stephens W, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med 2017; 380.
[120]
Aroniadis OC, Brandt LJ, Greenberg A, et al. Long-term Follow-up Study of fecal microbiota transplantation for severe and/or complicated clostridium difficile infection: A multicenter experience. J Clin Gastroenterol 2016; 5: 398-402.
[121]
Bakken JS, Polgreen PM, Beekmann SE, Riedo FX, Streit JA. Treatment approaches including fecal microbiota transplantation for Recurrent Clostridium Difficile Infection (RCDI) among infectious disease physicians. Anaerobe 2013; 24: 20-4.
[122]
Kao D, Roach B, Silva M, et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: A randomized clinical trial. JAMA 2017; 20: 1985-93.
[123]
Browne AS, Kelly CR. Fecal transplant in inflammatory bowel disease. Gastroenterol Clin North Am 2017; 4: 825-37.
[124]
Kang DW, Adams JB, Gregory AC, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 2017; 1: 10.
[125]
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 4: 913-6.e7.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy