[1]
Nezamzadeh-Ejhieh, A.; Banan, Z. Sunlight assisted photodecolorization of crystal violet catalyzed by CdS nanoparticles embedded on zeolite A. Desalination, 2012, 284(4), 157-166.
[2]
Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M. Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J., 2013, 228, 631-641.
[3]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS-NiS/zeolite nanoparticles: Experimental design based on response surface methodology (RSM), impedance spectroscopy and GC-MASS studies. J. Colloid Interface Sci., 2017, 490, 652-664.
[4]
Zhang, W.J.; Ma, Z.; Du, L.; Yang, L.L.; Chen, X.J.; He, H.B. Effects of calcination temperature on characterization and photocatalytic activity of La2Ti2O7 supported on HZSM-5 zeolite. J. Alloys Compd., 2017, 695, 3541-3546.
[5]
Zhang, W.J.; Bi, F.F.; Yu, Y.; He, H.B. Phosphoric acid treating of ZSM-5 zeolite for the enhanced photocatalytic activity of TiO2/HZSM-5. J. Mol. Catal.A Chem., 2013, 372, 6-12.
[6]
Zhou, P.; Wu, J.H.; Yu, W.L.; Zhao, G.H.; Fang, G.J.; Cao, S.W. Vectorial doping-promoting charge transfer in anatase TiO2 0 0 1 surface. Appl. Surf. Sci., 2014, 319, 167-172.
[7]
Ku, Y.; Shiu, S.J.; Wu, H.C. Decomposition of dimethyl phthalate in aqueous solution by UV–LED/TiO2 process under periodic illumination. J. Photochem. Photobiol.A Chem., 2017, 332, 299-305.
[8]
Zhang, W.J.; Wang, K.L.; Yu, Y.; He, H.B. TiO2/HZSM-5 nano-composite photocatalyst: HCl treatment of NaZSM-5 promotes photocatalytic degradation of methyl orange. Chem. Eng. J., 2010, 163, 62-67.
[9]
Babaahamdi-Milani, M.; Nezamzadeh-Ejhieh, A. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles. J. Hazard. Mater., 2016, 318, 291-301.
[10]
Zhang, W.J.; Liu, Y.X.; Pei, X.B.; Chen, X.J. Effects of indium doping on properties of xIn-0.1%Gd-TiO2 photocatalyst synthesized by sol-gel method. J. Phys. Chem. Solids, 2017, 104, 45-51.
[11]
Du, J.; Li, X.Y.; Li, K.; Gu, X.; Qi, W.Q.; Zhang, K. High hydrophilic Si-doped TiO2 nanowires by chemical vapor deposition. J. Alloys Compd., 2016, 687, 893-897.
[12]
Juma, A.; Acik, I.O.; Oluwabi, A.T.; Mere, A.; Mikli, V.; Danilson, M.; Krunks, M. Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis. Appl. Surf. Sci., 2016, 387, 539-545.
[13]
Zhang, W.J.; Pei, X.B.; Yang, B.; He, H.B. Effects of boron content and calcination temperature on properties of B-TiO2 photocatalyst prepared by solvothermal method. J. Adv. Oxid. Technol., 2014, 17, 66-72.
[14]
Simsek, E.B. Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl. Catal. B Environ, 2017, 200, 309-322.
[15]
Han, C.; Andersen, J.; Likodimos, V.; Falaras, P.; Linkugel, J.; Dionysiou, D.D. The effect of solvent in the sol–gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment. Catal. Today, 2014, 224, 132-139.
[16]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater., 2017, 321, 629-638.
[17]
Bahrami, M.; Nezamzadeh-Ejhieh, A. Effect of supporting and hybridizing of FeO and ZnO semiconductors onto an Iranian clinoptilolite nano-particles and the effect of ZnO/FeO ratio in the solar photodegradation of fish ponds waste water. Mater. Sci. Semicond. Process., 2014, 27, 833-840.
[18]
Cao, B.; Li, G.; Li, H.X. Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation. Appl. Catal. B Environ, 2016, 194, 42-49.
[19]
Sun, G.H.; Zhu, C.S.; Zheng, J.T.; Jiang, B.; Yin, H.C.; Wang, H.; Qiu, S.; Yuan, J.J.; Wu, M.B.; Wu, W.T.; Xue, Q.Z. Preparation of spherical and dendritic CdS@TiO2 hollow double-shelled nanoparticles for photocatalysis. Mater. Lett., 2016, 166, 113-115.
[20]
Zhang, W.J.; Pei, X.B.; Bai, J.W.; He, H.B. Calcination conditions on the properties of porous TiO2 film. J. Mater. Eng. Perform., 2014, 23, 1049-1054.
[21]
Scherrer, P. Determination of the size and internal structure of colloid particles by X-ray. Nachr. Ges. Wiss. Goettingen, Math.-. Phys. Kl., 1918, 1918, 98-100.
[22]
Su, H.D.; Ma, Z.; Hu, T.T.; Zhang, W.J.; He, H.B. Sol-gel synthesis of χTiO2/HZSM-5 composite photocatalyst on degradation of Reactive Brilliant Red X3B. Curr. Nanosci., 2017, 13, 292-298.
[23]
Grzmil, B.; Gleń, M.; Kic, B.; Lubkowski, K. Preparation and characterization of single-modified TiO2 for pigmentary applications. Indus. Eng. Chem. Res., 2011, 50, 6535-6542.
[24]
Moon, S.C.; Mametsuka, H.; Suzuki, E.; Nakahara, Y. Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water. Catal. Today, 1998, 45, 79-84.
[25]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J. Colloid Interface Sci., 2017, 490, 314-327.
[26]
Shams-Ghahfarokhi, Z.; Nezamzadeh-Ejhieh, A. As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Mater. Sci. Semicond. Process., 2015, 39, 265-275.