[1]
Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng., 2009, 32(1), 79.
[2]
Li, W-R.; Xie, X-B.; Shi, Q-S.; Zeng, H-Y.; You-Sheng, O-Y.; Chen, Y-B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[3]
Slawson, R.M.; Trevors, J.T.; Lee, H. Silver accumulation and resistance in Pseudomonas stutzeri. Arch. Microbiol., 1992, 158(6), 398-404.
[4]
Zhao, G.; Stevens, S.E. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals, 1998, 11(1), 27-32.
[5]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core--Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502.
[6]
Brahmachari, G. Neem-An omnipotent plant: A retrospection. ChemBioChem, 2004, 5(4), 408-421.
[7]
Aneja, K.R. Experiments in Microbiology, Plant Pathology and Biotechnology; New Age International: Dehli, India, 2003.
[8]
Das, P.; Mukherjee, S.; Sen, R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J. Appl. Microbiol., 2008, 104(6), 1675-1684.
[9]
Guzmán, M.G.; Dille, J.; Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng., 2009, 2(3), 104-111.
[10]
Kasthuri, J.; Kathiravan, K.; Rajendiran, N. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: A novel biological approach. J. Nanoparticle. Res., 2009, 11(5), 1075-1085.
[11]
Mohanty, A.; Das, C.; Dash, S.; Sahoo, D.C. Physico-chemical and antimicrobial study of polyherbal formulation. Int. J. Compr. Pharm., 2010, 1(4), 1-3.
[12]
Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother., 2008, 61(6), 1295-1301.
[13]
Vittorio, O.; Cecchini, M.; Parchi, P.; Lisanti, M. Manipulation, guidance and tracking of mesenchymal stem cells for regenerative medicine and transplantation: The role of magnetic nanoparticles. In: Stem Cells and Cancer Stem Cells; Springer, 2012; Vol. 7, pp. 219-226.
[14]
Kannan, N.; Selvaraj, S.; Murty, R.V. Microbial production of silver nanoparticles. Dig. J. Nanomater. Biostruct., 2010, 5(1), 135-140.
[15]
Drexler, K.E.; Minsky, M. Engines of creation: The coming era of technology; Anchor: USA, 1990.
[16]
Taleb, A.; Petit, C.; Pileni, M.P. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J. Phys. Chem. B, 1998, 102(12), 2214-2220.
[17]
Noginov, M.A.; Zhu, G.; Bahoura, M.; Adegoke, J.; Small, C.E.; Ritzo, B.A.; Drachev, V.P.; Shalaev, V.M. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett., 2006, 31(20), 3022-3024.
[18]
Link, S.; El-Sayed, M.A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 2003, 54(1), 331-366.
[19]
Kreibig, U.; Vollmer, M. Theoretical considerations. In: Optical Properties of Metal Clusters; Springer, 1995; pp. 13-201.
[20]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[21]
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874.