[1]
Nejadi, S.M.; Samane, S.G.; Rahime, E. Characterization of responsivity and quantum efficiency of TiO2- based photodetectors doped with Ag N anoparticles. 2nd Int. Conf. Mech. Electron. Eng, 2010, 2, pp. 394-397.
[2]
Wang, Y.; Zhai, J.; Song, Y. Feather-like Ag@TiO2 nanostructures as plasmonic antenna to enhance optoelectronic performance. Phys. Chem. Chem. Phys., 2015, 17, 5051-5056.
[3]
Chen, H.; Wang, Q.; Lyu, M.; Zhang, Z.; Wang, L. Wavelength-switchable photocurrent in a hybrid TiO2 –Ag nanocluster photoelectrode. Chem. Commun., 2015, 51, 12072-12075.
[4]
Barad, H.N.; Ginsburg, A.; Cohen, H.; Rietwyk, K.J.; Keller, D.A.; Tirosh, S.; Bouhadana, Y.; Anderson, A.Y.; Zaban, A. Hot electron-based solid state TiO2|Ag solar cells. Adv. Mater. Interfaces, 2016, 3, 1500789.
[5]
Takai, A.; Kamat, P.V. Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. ACS Nano, 2011, 5, 7369-7376.
[6]
Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev., 1995, 95, 735-758.
[7]
Miyasaka, T.; Kijitori, Y.; Ikegami, M. Plastic dye-sensitized photovoltaic cells and modules based on low-temperature preparation of mesoscopic titania electrodes. Electrochemistry, 2007, 75, 2-12.
[8]
Štangar, U.L.; Černigoj, U.; Trebše, P.; Maver, K.; Gross, S. Photocatalytic TiO2 coatings: Effect of substrate and template. Monatshefte Fur Chemie., 2006, 137, 647-655.
[9]
Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev., 2007, 107, 2891-2959.
[10]
Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon, 2014, 8, 95-103.
[11]
Tian, Y.; Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun., 2004, 0, 1810-1811.
[12]
Zhao, Z.; Wang, Y.; Xu, J.; Wang, Y. Mesoporous Ag/TiO2 nanocomposites with greatly enhanced photocatalytic performance towards degradation of methyl orange under visible light. RSC Adv, 2015, 5, 59297-59305.
[13]
Jaafar, N.F.; Jalil, A.A.; Triwahyono, S. Visible-light photoactivity of plasmonic silver supported on mesoporous TiO2 nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation of Ag-Ti interaction. Appl. Surf. Sci., 2017, 392, 1068-1077.
[14]
Coneo Rodríguez, R.; Bruno, M.M.; Angelomé, P.C. Au nanoparticles embedded in mesoporous ZrO2 films: Multifunctional materials for electrochemical detection. Sens. Actuators B Chem., 2018, 254, 603-612.
[15]
Martínez Gazoni, R.; Bellino, M.G.; Fuertes, M.C.; Giménez, G.; Soler-Illia, G.J.A.A.; Martínez Ricci, M.L. Designed nanoparticle–mesoporous multilayer nanocomposites as tunable plasmonic–photonic architectures for electromagnetic field enhancement. J. Mater. Chem. C , 2017, 5, 3445-355.
[16]
Angelomé, P.C.; Liz-Marzán, L.M. Synthesis and applications of mesoporous nanocomposites containing metal nanoparticles. J. Sol-Gel Sci. Technol., 2014, 70, 180-190.
[17]
Delgado, D.C.; Pérez Gagni, D.E.; Catalano, P.N.; Bellino, M.G. Mesoporous thin film structures as metal nanoparticle reactors for electronic circuits: Effects of matrix crystallinity and nanoparticle functionalization. Superlattices Microstruct., 2017, 109, 286-295.
[18]
White, R.J.; Luque, R.; Budarin, V.L.; Clark, J.H.; Macquarrie, D.J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev., 2009, 38, 481-494.
[19]
Stathatos, E.; Lianos, P.; Falaras, P.; Siokou, A. Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir, 2000, 16, 2398-2400.
[20]
Wolosiuk, A.; Tognalli, N.G.; Martínez, E.D.; Granada, M.; Fuertes, M.C.; Troiani, H.; Bilmes, S.A.; Fainstein, A.; Soler-Illia, G.J. Silver nanoparticle-mesoporous oxide nanocomposite thin films: A platform for spatially homogeneous SERS-active substrates with enhanced stability. ACS Appl. Mater. Interfaces, 2014, 6, 5263-5272.
[21]
Krylova, G.V.; Gnatyuk, Y.I.; Smirnova, N.P.; Eremenko, A.M.; Gun’Ko, V.M. Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol-gel template method. J. Sol-Gel Sci. Technol., 2009, 50, 216-228.
[22]
Bandarenka, H.V.; Girel, K.V.; Bondarenko, V.P.; Khodasevich, I.A.; Panarin, A.Y.; Terekhov, S.N. Formation regularities of plasmonic silver nanostructures on porous silicon for effective surface-enhanced raman scattering. Nanoscale Res. Lett., 2016, 11, 262.
[23]
Wang, X.; Wu, Y.; Liu, X.; Chen, J.; Zhen, C.; Ma, L.; Hou, D. A template-based method for preparing ordered porous silicon. J. Porous Mater., 2015, 22, 1431-1435.
[24]
Zhao, L.L.; Kelly, K.L.; Schatz, G.C. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B, 2003, 107, 7343-7350.
[25]
Halas, N.J.; Lal, S.; Chang, W.S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 2011, 111, 3913-3961.
[26]
Sánchez, V.M.; Martínez, E.D.; Martínez Ricci, M.L.; Troiani, H.; Soler-Illia, G.J.A.A. Optical properties of Au nanoparticles included in mesoporous TiO2 thin films: A dual experimental and modeling study. J. Phys. Chem. C, 2013, 117, 7246-7259.
[27]
Tognalli, N.; Fainstein, A.; Calvo, E.; Bonazzola, C.; Pietrasanta, L.; Campoy-Quiles, M.; Etchegoin, P. SERS in PAH-Os and gold nanoparticle self-assembled multilayers. J. Chem. Phys., 2005, 123(4), 044707.
[28]
Jain, P.K.; El-Sayed, M.A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 2010, 487, 153-164.
[29]
Ung, T.; Liz-Marzan, L.M.; Mulvaney, P. Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B, 2001, 105, 3441-3452.
[30]
Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B. Characterization of nanostructured TiO2:Ag films: Structural and optical properties. J. Phys. Conf. Ser., 2016, 764, 012019.
[31]
Jung, S.Y.; Ha, T.J.; Park, C.S.; Seo, W.S.; Lim, Y.S.; Shin, S.; Cho, H.H.; Park, H.H. Improvement in the conductivity ratio of ordered mesoporous Ag-TiO2 thin films for thermoelectric materials. Thin Solid Films, 2013, 529, 94-97.
[32]
Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed; New York: John Wiley & Sons, 1974.
[33]
Kuzma, A.; Weis, M.; Flickyngerova, S.; Jakabovic, J.; Satka, A.; Dobrocka, E.; Chlpik, J.; Cirak, J.; Donoval, M.; Telek, P.; Uherek, F.; Donoval, D. Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles. J. Appl. Phys., 2012, 112, 103531.
[34]
Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa, H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett., 2010, 1, 2031-2036.
[35]
Daniel, L.S.; Nagai, H.; Sato, M. Absorption spectra and photocurrent densities of Ag nanoparticle/TiO2 composite thin films with various amounts of Ag. J. Mater. Sci., 2013, 48, 7162-7170.
[36]
Christopher, P.; Moskovits, M. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem., 2017, 68, 379-398.
[37]
Mercuri, M.; Pierpauli, K.; Bellino, M.G.; Berli, C.L.A. Complex filling dynamics in mesoporous thin films. Langmuir, 2017, 33, 152-157.
[38]
Berli, C.L.A.; Mercuri, M.; Bellino, M.G. Modeling the abnormally slow infiltration rate in mesoporous films. Phys. Chem. Chem. Phys., 2017, 19, 1731-1734.
[39]
Gimenez, R.; Delgado, D.C.; Palumbo, F.; Berli, C.L.A.; Bellino, M.G. Mesoporous metal-oxide-semiconductor capacitors detect intra-porous fluid changes. Colloids Surf. A Physicochem. Eng. Asp., 2017, 524, 66-70.
[40]
Matsubara, K.; Kelly, K.L.; Sakai, N.; Tatsuma, T. Effects of adsorbed water on plasmon-based dissolution, redeposition and resulting spectral changes of Ag nanoparticles on single-crystalline TiO2. Phys. Chem. Chem. Phys., 2008, 10, 2263-2269.