Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Quercetin and its Natural Sources in Wound Healing Management

Author(s): Nicoletta Polerà , Mariateresa Badolato , Filomena Perri , Gabriele Carullo and Francesca Aiello*

Volume 26, Issue 31, 2019

Page: [5825 - 5848] Pages: 24

DOI: 10.2174/0929867325666180713150626

Price: $65

Abstract

Giving a glance to the report of Wound Care Market by Product updated in 2017, we can see that wound care market is expected to reach USD 22.01 billion by 2022 from USD 18.35 billion at a CAGR of 3.7%. Numerous factors are driving the growth of this market, including the increasing prevalence of chronic wounds and acute wounds, increasing aged population, rising R&D activities and advancement in the field of wound care research. Advanced wound management products are accounted for the largest market share in 2017. These evidences mean that the wound care research represents a Clinical Emergency other than an interesting Marketing tool. Drug therapies so far fight efficaciously with the opportunistic pathologies derived from chronic wounds, although an unsolved challenge is still finding a useful remedy to correct the impaired wound healing process and overcome the chronic wound state, to avoid bacterial rising and severe pain. Traditional medicinal plants have been widely used in the management of wounds and different plant extracts have been evaluated for their wound healing properties through both in vitro and in vivo studies. Their phytochemical components in particular quercetin, contribute to their remedial properties in wound repair. Quercetin has important biological activities related to the improvement of the wound healing process. The present review discusses and focuses on the latest findings of the wound healing properties of quercetin, alone or as a part of plant extract, and its role as a new frontier in wound repair.

Keywords: Wound healing, quercetin, natural plant extracts, quercetin loaded vehicles, wound care research, bacterial rising, medicinal plants.

[1]
Eming, S.A.; Tomic-Canic, M. Updates in wound healing: Mechanisms and translation. Exp. Dermatol., 2017, 26(2), 97-98.
[http://dx.doi.org/10.1111/exd.13281] [PMID: 28133858]
[2]
Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res., 2009, 37(5), 1528-1542.
[http://dx.doi.org/10.1177/147323000903700531] [PMID: 19930861]
[3]
Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery, 2005, 23(2), 37-42.
[4]
Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med., 1999, 341(10), 738-746.
[http://dx.doi.org/10.1056/NEJM199909023411006] [PMID: 10471461]
[5]
Kondo, T.; Ishida, Y. Molecular pathology of wound healing. Forensic Sci. Int., 2010, 203(1-3), 93-98.
[http://dx.doi.org/10.1016/j.forsciint.2010.07.004] [PMID: 20739128]
[6]
Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res., 2010, 89(3), 219-229.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[7]
Zielins, E.R.; Brett, E.A.; Luan, A.; Hu, M.S.; Walmsley, G.G.; Paik, K.; Senarath-Yapa, K.; Atashroo, D.A.; Wearda, T.; Lorenz, H.P.; Wan, D.C.; Longaker, M.T. Emerging drugs for the treatment of wound healing. Expert Opin. Emerg. Drugs, 2015, 20(2), 235-246.
[http://dx.doi.org/10.1517/14728214.2015.1018176] [PMID: 25704608]
[8]
Baltzis, D.; Eleftheriadou, I.; Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv. Ther., 2014, 31(8), 817-836.
[http://dx.doi.org/10.1007/s12325-014-0140-x] [PMID: 25069580]
[9]
Loots, M.A.; Lamme, E.N.; Zeegelaar, J.; Mekkes, J.R.; Bos, J.D.; Middelkoop, E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J. Invest. Dermatol., 1998, 111(5), 850-857.
[http://dx.doi.org/10.1046/j.1523-1747.1998.00381.x] [PMID: 9804349]
[10]
Boateng, J.; Catanzano, O. Advanced Therapeutic Dressings for Effective Wound Healing--A Review. J. Pharm. Sci., 2015, 104(11), 3653-3680.
[http://dx.doi.org/10.1002/jps.24610] [PMID: 26308473]
[11]
Enoch, S.; Grey, J.E.; Harding, K.G. ABC of wound healing. Non-surgical and drug treatments. BMJ, 2006, 332(7546), 900-903.
[http://dx.doi.org/10.1136/bmj.332.7546.900] [PMID: 16613966]
[12]
Duscher, D.; Barrera, J.; Wong, V.W.; Maan, Z.N.; Whittam, A.J.; Januszyk, M.; Gurtner, G.C. Stem cells in wound healing: the future of regenerative medicine? a mini-review. Gerontology, 2016, 62(2), 216-225.
[http://dx.doi.org/10.1159/000381877] [PMID: 26045256]
[13]
Braund, R.; Hook, S.M.; Greenhill, N.; Medlicott, N.J. Distribution of fibroblast growth factor-2 (FGF-2) within model excisional wounds following topical application. J. Pharm. Pharmacol., 2009, 61(2), 193-200.
[http://dx.doi.org/10.1211/jpp.61.02.0008] [PMID: 19178766]
[14]
Sosa, I.J.; Reyes, O.; Kuffler, D.P. Elimination of a pressure ulcer with electrical stimulation--a case study. P. R. Health Sci. J., 2008, 27(2), 175-179.
[PMID: 18616047]
[15]
Hodde, J. Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J. Surg., 2006, 76(12), 1096-1100.
[http://dx.doi.org/10.1111/j.1445-2197.2006.03948.x] [PMID: 17199697]
[16]
Ramelet, A.A.; Hirt-Burri, N.; Raffoul, W.; Scaletta, C.; Pioletti, D.P.; Offord, E.; Mansourian, R.; Applegate, L.A. Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp. Gerontol., 2009, 44(3), 208-218.
[http://dx.doi.org/10.1016/j.exger.2008.11.004] [PMID: 19049860]
[17]
Mogoşanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm., 2014, 463(2), 127-136.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.015] [PMID: 24368109]
[18]
Pazyar, N.; Yaghoobi, R.; Rafiee, E.; Mehrabian, A.; Feily, A. Skin wound healing and phytomedicine: a review. Skin Pharmacol. Physiol., 2014, 27(6), 303-310.
[http://dx.doi.org/10.1159/000357477] [PMID: 24993834]
[19]
Bahramsoltani, R.; Farzaei, M.H.; Rahimi, R. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch. Dermatol. Res., 2014, 306(7), 601-617.
[http://dx.doi.org/10.1007/s00403-014-1474-6] [PMID: 24895176]
[20]
Aiello, F.; Armentano, B.; Polerà, N.; Carullo, G.; Loizzo, M.R.; Bonesi, M.; Cappello, M.S.; Capobianco, L.; Tundis, R. From vegetable waste to nnew agents for potential health applications: antioxidant properties and effects of extracts, fractions and pinocembrin from glycyrrhiza glabra L. aerial parts on viability of five human cancer lines. J. Agric. Food Chem., 2017, 65(36), 7944-7954.
[http://dx.doi.org/10.1021/acs.jafc.7b03045] [PMID: 28862446]
[21]
Tundis, R.; Frattaruolo, L.; Carullo, G.; Armentano, B.; Badolato, M.; Loizzo, M.R.; Aiello, F.; Cappello, A.R. An ancient remedial repurposing: synthesis of fatty acid acyl derivatives of pinocembrin as potential antimicrobial/antiinflammatory agents. Nat. Prod. Res., 2019, 33(2), 1162-1168.
[http://dx.doi.org/10.1080/14786419.2018.1440224] [PMID: 29463111]
[22]
Badolato, M.; Carullo, G.; Cione, E.; Aiello, F.; Caroleo, M.C. From the hive: Honey, a novel weapon against cancer. Eur. J. Med. Chem., 2017, 142, 290-299.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.064] [PMID: 28797675]
[23]
Carullo, G.; Durante, M.; Sciubba, F.; Restuccia, D.; Spizzirri, U.G.; Ahmed, A.; Di Cocco, M.E.; Saponara, S.; Aiello, F.; Fusi, F. Vasoactivity of Mantonico and Pecorello grape pomaces on rat aorta rings: An insight into nutraceutical development. J. Funct. Foods, 2019, 57, 328-334.
[http://dx.doi.org/10.1016/j.jff.2019.04.023]
[24]
Governa, P.; Carullo, G.; Biagi, M.; Rago, V.; Aiello, F. Evaluation of the in vitro wound-healing activity of calabrian honeys. Antioxidants, 2019, 8(2), 36.
[http://dx.doi.org/10.3390/antiox8020036] [PMID: 30736314]
[25]
Das, U.; Behera, S.S.; Pramanik, K. Ethno-herbal-medico in wound repair: an incisive review. Phytother. Res., 2017, 31(4), 579-590.
[http://dx.doi.org/10.1002/ptr.5786] [PMID: 28198058]
[26]
Kumar, B.; Vijayakumar, M.; Govindarajan, R.; Pushpangadan, P. Ethnopharmacological approaches to wound healing--exploring medicinal plants of India. J. Ethnopharmacol., 2007, 114(2), 103-113.
[http://dx.doi.org/10.1016/j.jep.2007.08.010] [PMID: 17884316]
[27]
Agyare, C.; Asase, A.; Lechtenberg, M.; Niehues, M.; Deters, A.; Hensel, A. An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana. J. Ethnopharmacol., 2009, 125(3), 393-403.
[http://dx.doi.org/10.1016/j.jep.2009.07.024] [PMID: 19635544]
[28]
Ruszymah, B.H.; Chowdhury, S.R.; Manan, N.A.B.A.; Fong, O.S.; Adenan, M.I.; Saim, A.B. Aqueous extract of Centella asiatica promotes corneal epithelium wound healing in vitro. J. Ethnopharmacol., 2012, 140(2), 333-338.
[http://dx.doi.org/10.1016/j.jep.2012.01.023] [PMID: 22301444]
[29]
Somboonwong, J.; Kankaisre, M.; Tantisira, B.; Tantisira, M.H. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC Complement. Altern. Med., 2012, 12, 103.
[http://dx.doi.org/10.1186/1472-6882-12-103] [PMID: 22817824]
[30]
Ponrasu, T.; Suguna, L. Efficacy of Annona squamosa L in the synthesis of glycosaminoglycans and collagen during wound repair in streptozotocin induced diabetic rats. BioMed Res. Int., 2014, 2014124352
[http://dx.doi.org/10.1155/2014/124352] [PMID: 25003104]
[31]
Ganeshkumar, M.; Ponrasu, T.; Krithika, R.; Iyappan, K.; Gayathri, V.S.; Suguna, L. Topical application of Acalypha indica accelerates rat cutaneous wound healing by up-regulating the expression of Type I and III collagen. J. Ethnopharmacol., 2012, 142(1), 14-22.
[http://dx.doi.org/10.1016/j.jep.2012.04.005] [PMID: 22521732]
[32]
Ponrasu, T.; Madhukumar, K.N.; Ganeshkumar, M.; Iyappan, K.; Sangeethapriya, V.; Gayathri, V.S.; Suguna, L. Efficacy of Acorus calamus on collagen maturation on full thickness cutaneous wounds in rats. Pharmacogn. Mag., 2014, 10(Suppl. 2), S299-S305.
[http://dx.doi.org/10.4103/0973-1296.133283] [PMID: 24991107]
[33]
Sumitra, M.; Manikandan, P.; Suguna, L. Efficacy of Butea monosperma on dermal wound healing in rats. Int. J. Biochem. Cell Biol., 2005, 37(3), 566-573.
[http://dx.doi.org/10.1016/j.biocel.2004.08.003] [PMID: 15618014]
[34]
Sumitra, M.; Manikandan, P.; Gayathri, V.S.; Mahendran, P.; Suguna, L. Emblica officinalis exerts wound healing action through up-regulation of collagen and extracellular signal-regulated kinases (ERK1/2). Wound Repair Regen., 2009, 17(1), 99-107.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00446.x] [PMID: 19152656]
[35]
Suguna, L.; Singh, S.; Sivakumar, P.; Sampath, P.; Chandrakasan, G. Influence of Terminalia chebula on dermal wound healing in rats. Phytother. Res., 2002, 16(3), 227-231.
[http://dx.doi.org/10.1002/ptr.827] [PMID: 12164266]
[36]
Ezzat, S.M.; Choucry, M.A.; Kandil, Z.A. Antibacterial, antioxidant, and topical anti-inflammatory activities of Bergia ammannioides: A wound-healing plant. Pharm. Biol., 2016, 54(2), 215-224.
[http://dx.doi.org/10.3109/13880209.2015.1028079] [PMID: 25853974]
[37]
Jewo, P.I.; Fadeyibi, I.O.; Babalola, O.S.; Saalu, L.C.; Benebo, A.S.; Izegbu, M.C.; Ashiru, O.A. A comparative study of the wound healing properties of moist exposed burn ointment [Mebo] and silver sulphadiazine. Ann. Burns Fire Disasters, 2009, 22(2), 79-82.
[PMID: 21991159]
[38]
Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett., 2009, 285(2), 109-115.
[http://dx.doi.org/10.1016/j.canlet.2009.04.033] [PMID: 19464787]
[39]
Gomathi, K.; Gopinath, D.; Rafiuddin Ahmed, M.; Jayakumar, R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials, 2003, 24(16), 2767-2772.
[http://dx.doi.org/10.1016/S0142-9612(03)00059-0] [PMID: 12711523]
[40]
Manivannan, R.; Prabakaran, K.; Ilayaraja, S. Isolation, identification and antibacterial and wound healing studies of quercetin-3-O-α-L-rhamnopyranoside-2-gallate. Int. J. Appl. Sci. Eng., 2014, 12, 99-106.
[41]
Thiem, B.; Grosslinka, O. Antimicrobial activity of Rubus chamaemorus leaves. Fitoter., 2003, 75, 93-95.
[http://dx.doi.org/10.1016/j.fitote.2003.08.014] [PMID: 14693229]
[42]
Pastorino, G.; Marchetti, C.; Borghesi, B.; Cornara, L.; Ribulla, S.; Burlando, B. Biological activities of the legume crops Melilotus officinalis and Lespedeza capitata for skin care and pharmaceutical applications. Ind. Crops Prod., 2017, 96, 158-164.
[http://dx.doi.org/10.1016/j.indcrop.2016.11.047]
[43]
Clericuzio, M.; Tinello, S.; Burlando, B.; Ranzato, E.; Martinotti, S.; Cornara, L.; La Rocca, A. Flavonoid oligoglycosides from Ophioglossum vulgatum L. having wound healing properties. Planta Med., 2012, 78(15), 1639-1644.
[http://dx.doi.org/10.1055/s-0032-1315149] [PMID: 22936389]
[44]
Krishnappa, P.; Venkatarangaiah, K. Venkatesh, Rajanna SKS, Balan RK. Wound healing activity of Delonixelata stem bark extract and its isolated constituent quercetin-3-rhamnopyranosyl-[1-6] glucopyranoside in rats. JPA, 2016, 6(6), 389-395.
[http://dx.doi.org/10.1016/j.jpha.2016.05.001] [PMID: 29404008]
[45]
Nithya, M.; Suguna, L.; Rose, C. The effect of nerve growth factor on the early responses during the process of wound healing. Biochim. Biophys. Acta, 2003, 1620(1-3), 25-31.
[http://dx.doi.org/10.1016/S0304-4165(02)00501-9] [PMID: 12595069]
[46]
Lodhi, S.; Jain, A.; Jain, A.P.; Pawar, R.S.; Singhai, A.K. Effects of flavonoids from Martynia annua and Tephrosia purpurea on cutaneous wound healing. Avicenna J. Phytomed., 2016, 6(5), 578-591.
[PMID: 27761428]
[47]
Lodhi, S.; Singhai, A.K. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pac. J. Trop. Med., 2013, 6(4), 253-259.
[http://dx.doi.org/10.1016/S1995-7645(13)60053-X] [PMID: 23608325]
[48]
Lodhi, S.; Jain, A.P.; Sharma, V.K.; Singhai, A.K. Wound healing effect of flavonoid-rich fraction from Tephrosia purpurea Linn. on Streptozotocin-induced diabetic rats. J. Herbs Spices Med. Plants, 2013, 19, 191-205.
[http://dx.doi.org/10.1080/10496475.2013.779620]
[49]
Freiesleben, S.H.; Soelberg, J.; Nyberg, N.T.; Jäger, A.K. Determination of the wound healing potentials of medicinal plants historically used in Ghana. Evid. Based Complement. Alternat. Med., 2017.20179480791
[http://dx.doi.org/10.1155/2017/9480791] [PMID: 28326125]
[50]
Almeida, J.S.; Benvegnú, D.M.; Boufleur, N.; Reckziegel, P.; Barcelos, R.C.S.; Coradini, K.; de Carvalho, L.M.; Bürger, M.E.; Beck, R.C.R. Hydrogels containing rutin intended for cutaneous administration: efficacy in wound healing in rats. Drug Dev. Ind. Pharm., 2012, 38(7), 792-799.
[http://dx.doi.org/10.3109/03639045.2011.628676] [PMID: 22066462]
[51]
Patil, S.L.; Mallaiah, S.H.; Patil, R.K. Antioxidative and radioprotective potential of rutin and quercetin in Swiss albino mice exposed to gamma radiation. J. Med. Phys., 2013, 38(2), 87-92.
[http://dx.doi.org/10.4103/0971-6203.111321] [PMID: 23776312]
[52]
Tran, N.Q.; Joung, Y.K.; Lih, E.; Park, K.D. In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules, 2011, 12(8), 2872-2880.
[http://dx.doi.org/10.1021/bm200326g] [PMID: 21591793]
[53]
Brown, S.A.; Coimbra, M.; Coberly, D.M.; Chao, J.J.; Rohrich, R.J. Oral nutritional supplementation accelerates skin wound healing: a randomized, placebo-controlled, double-arm, crossover study. Plast. Reconstr. Surg., 2004, 114(1), 237-244.
[http://dx.doi.org/10.1097/01.PRS.0000128818.28425.52] [PMID: 15220599]
[54]
George, B.P.; Parimelazhagan, T.; Sajeesh, T.; Saravanan, S. Antitumor and wound healing properties of Rubus niveus Thunb. root. J. Environ. Pathol. Toxicol. Oncol., 2014, 33(2), 145-158.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2014010949] [PMID: 24941297]
[55]
Parente, L.M. Lino Júnior, Rde.S.; Tresvenzol, L.M.; Vinaud, M.C.; de Paula, J.R.; Paulo, N.M. Wound healing and antiinflammatory effect in animal models of Calendula officinalis L. growing in brazil. Evid. Based Complement. Alternat. Med., 2012, 2012375671
[http://dx.doi.org/10.1155/2012/375671] [PMID: 22315631]
[56]
Preethi, K.; Kuttan, G.; Kuttan, R. Antioxidant potential of an extract of Calendula officinalis flowers in vitro and in vivo. Pharm. Biol., 2006, 44, 691-697.
[http://dx.doi.org/10.1080/13880200601009149]
[57]
Dinda, M.; Mazumdar, S.; Das, S.; Ganguly, D.; Dasgupta, U.B.; Dutta, A.; Jana, K.; Karmakar, P. The water fraction of Calendula officinalis hydroethanol extract stimulates in vitro and in vivo proliferation of dermal fibroblasts in wound healing. Phytother. Res., 2016, 30(10), 1696-1707.
[http://dx.doi.org/10.1002/ptr.5678] [PMID: 27426257]
[58]
Frazier, K.; Williams, S.; Kothapalli, D.; Klapper, H.; Grotendorst, G.R. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J. Invest. Dermatol., 1996, 107(3), 404-411.
[http://dx.doi.org/10.1111/1523-1747.ep12363389] [PMID: 8751978]
[59]
Henshaw, F.R.; Boughton, P.; Lo, L.; McLennan, S.V.; Twigg, S.M. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing. J. Diabetes Res., 2015, 2015236238
[http://dx.doi.org/10.1155/2015/236238] [PMID: 25789327]
[60]
Liu, L.D.; Shi, H.J.; Jiang, L. Li-chun Wang L, Ma S, Dong C, Wang J, Zhao H, Liao Y, Li Q. The repairing effect of a recombinant human connective-tissue growth factor in a burn-wounded rhesus-monkey [Macacamulatta] model. Biotechnol. Appl. Biochem., 2007, 47, 105-112.
[http://dx.doi.org/10.1042/BA20060114] [PMID: 17181532]
[61]
Machado, M.A.; Contar, C.M.; Brustolim, J.A.; Candido, L.; Azevedo-Alanis, L.R.; Gregio, A.M.T.; Trevilatto, P.C.; Soares de Lima, A.A. Management of two cases of desquamative gingivitis with clobetasol and Calendula officinalis gel. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2010, 154(4), 335-338.
[http://dx.doi.org/10.5507/bp.2010.050] [PMID: 21293545]
[62]
Saini, P.; Al-Shibani, N.; Sun, J.; Zhang, W.; Song, F.; Gregson, K.S.; Windsor, L.J. Effects of Calendula officinalis on human gingival fibroblasts. Homeopathy, 2012, 101(2), 92-98.
[http://dx.doi.org/10.1016/j.homp.2012.02.003] [PMID: 22487368]
[63]
Süntar, I.P.; Akkol, E.K.; Yalçin, F.N.; Koca, U.; Keleş, H.; Yesilada, E. Wound healing potential of Sambucus ebulus L. leaves and isolation of an active component, quercetin 3-O-glucoside. J. Ethnopharmacol., 2010, 129(1), 106-114.
[http://dx.doi.org/10.1016/j.jep.2010.01.051] [PMID: 20132876]
[64]
Seo, S.H.; Lee, S.H.; Cha, P.H.; Kim, M.Y.; Min, S.; Choi, K.Y. Polygonum aviculare L. and its active compounds, quercitrin hydrate, caffeic acid, and rutin, activate the Wnt/β-catenin pathway and induce cutaneous wound healing. Phytother. Res., 2016, 30(5), 848-854.
[http://dx.doi.org/10.1002/ptr.5593] [PMID: 26929003]
[65]
Bielefeld, K.A.; Amini-Nik, S.; Alman, B.A. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell. Mol. Life Sci., 2013, 70(12), 2059-2081.
[http://dx.doi.org/10.1007/s00018-012-1152-9] [PMID: 23052205]
[66]
Lee, S.H.; Zahoor, M.; Hwang, J.K.; Min, S.; Choi, K.Y. Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility. PLoS One, 2012, 7(11)e48791
[http://dx.doi.org/10.1371/journal.pone.0048791] [PMID: 23144972]
[67]
Bellavia, G.; Fasanaro, P.; Melchionna, R.; Capogrossi, M.C.; Napolitano, M. Transcriptional control of skin reepithelialization. J. Dermatol. Sci., 2014, 73(1), 3-9.
[http://dx.doi.org/10.1016/j.jdermsci.2013.08.007] [PMID: 24012494]
[68]
Lee, S.H.; Yoon, J.; Shin, S.H.; Zahoor, M.; Kim, H.J.; Park, P.J.; Park, W.S.; Min, S.; Kim, H.Y.; Choi, K.Y. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells. PLoS One, 2012, 7(4)e34152
[http://dx.doi.org/10.1371/journal.pone.0034152] [PMID: 22506014]
[69]
Moalla Rekik, D.; Ben Khedir, S.; Ksouda Moalla, K.; Kammoun, N.G.; Rebai, T.; Sahnoun, Z. Evaluation of Wound Healing Properties of Grape Seed, Sesame, and Fenugreek Oils. Evid. Based Complement. Alternat. Med., 2016, 20167965689
[http://dx.doi.org/10.1155/2016/7965689] [PMID: 27990170]
[70]
Bravi, M.; Spinoglio, F.; Verdone, N. Improving the extraction of α-tocopherol-enriched oil from grape seeds by supercritical CO2. Optimization of the extraction conditions. J. Food Eng., 2007, 78, 488-493.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.10.017]
[71]
Lawrence, W.T. Physiology of the acute wound. Clin. Plast. Surg., 1998, 25(3), 321-340.
[PMID: 9696896]
[72]
Farage, MA; Miller, KW; Maibach, HI Degenerative changes in aging skin., 2010.
[http://dx.doi.org/10.1007/978-3-540-89656-2_4]
[73]
Aiello, F.; Carullo, G.; Badolato, M.; Brizzi, A. TRPV1-FAAH-COX: The couples game in pain treatment. ChemMedChem, 2016, 11(16), 1686-1694.
[http://dx.doi.org/10.1002/cmdc.201600111] [PMID: 27240888]
[74]
De Jong, A.; Plat, J.; Bast, A.; Godschalk, R.W.L.; Basu, S.; Mensink, R.P. Effects of plant sterol and stanol ester consumption on lipid metabolism, antioxidant status and markers of oxidative stress, endothelial function and low-grade inflammation in patients on current statin treatment. Eur. J. Clin. Nutr., 2008, 62(2), 263-273.
[http://dx.doi.org/10.1038/sj.ejcn.1602733] [PMID: 17487211]
[75]
Süntar, I.P.; Akkol, E.K.; Yilmazer, D.; Baykal, T.; Kirmizibekmez, H.; Alper, M.; Yeşilada, E. Investigations on the in vivo wound healing potential of Hypericum perforatum L. J. Ethnopharmacol., 2010, 127(2), 468-477.
[http://dx.doi.org/10.1016/j.jep.2009.10.011] [PMID: 19833187]
[76]
Calvo, T.R.; Lima, Z.P.; Silva, J.S.; Ballesteros, K.V.R.; Pellizzon, C.H.; Hiruma-Lima, C.A.; Tamashiro, J.; Brito, A.R.; Takahira, R.K.; Vilegas, W. Constituents and antiulcer effect of Alchornea glandulosa: activation of cell proliferation in gastric mucosa during the healing process. Biol. Pharm. Bull., 2007, 30(3), 451-459.
[http://dx.doi.org/10.1248/bpb.30.451] [PMID: 17329837]
[77]
González, E.; Montenegro, M.A.; Nazareno, M.A.; López de Mishima, B.A. Carotenoid composition and vitamin A value of an Argentinian squash (Cucurbita moschata). Arch. Latinoam. Nutr., 2001, 51(4), 395-399.
[PMID: 12012567]
[78]
Kahraman, A.; Erkasap, N.; Köken, T.; Serteser, M.; Aktepe, F.; Erkasap, S. The antioxidative and antihistaminic properties of quercetin in ethanol-induced gastric lesions. Toxicology, 2003, 183(1-3), 133-142.
[http://dx.doi.org/10.1016/S0300-483X(02)00514-0] [PMID: 12504347]
[79]
de Barros, M.; Mota da Silva, L.; Boeing, T.; Somensi, L.B.; Cury, B.J.; de Moura Burci, L.; Santin, J.R.; de Andrade, S.F.; Monache, F.D.; Cechinel-Filho, V. Pharmacological reports about gastroprotective effects of methanolic extract from leaves of Solidago chilensis (Brazilian arnica) and its components quercitrin and afzelin in rodents. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(4), 403-417.
[http://dx.doi.org/10.1007/s00210-015-1208-0] [PMID: 26758066]
[80]
Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J., 2003, 17(10), 1195-1214.
[http://dx.doi.org/10.1096/fj.02-0752rev] [PMID: 12832285]
[81]
Sitarek, P.; Skala, E. WysokiNska H, Wielanek M, Szemraj J, Toma M, Tomasz UliwiNski T. The Effect of Leonuruss ibiricus Plant Extracts on Stimulating Repair and Protective Activity against Oxidative DNA Damage in CHO Cells and Content of Phenolic Compounds. Oxid. Med. Cell. Longev., 2016, 2016(14)5738193
[http://dx.doi.org/10.1155/2016/5738193] [PMID: 26788249]
[82]
Moulaoui, K.; Caddeo, C.; Manca, M.L.; Castangia, I.; Valenti, D.; Escribano, E.; Atmani, D.; Fadda, A.M.; Manconi, M. Identification and nanoentrapment of polyphenolic phytocomplex from Fraxinus angustifolia: in vitro and in vivo wound healing potential. Eur. J. Med. Chem., 2015, 89, 179-188.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.047] [PMID: 25462238]
[83]
Song, L.; Tian, L.; Maa, Y.; Xie, Y.; Feng, H.; Qin, F.; Moa, L.; Lin, S.; Hou, L.; Wanga, C. Protection of flavonoids from Smilax china L. rhizome on phenol mucilage-induced pelvic inflammation in rats by attenuating inflammation and fibrosis. J. Funct. Foods, 2017, 28, 194-204.
[http://dx.doi.org/10.1016/j.jff.2016.11.015]
[84]
Hwang, I.K.; Lee, C.H.; Yoo, K.Y.; Choi, J.H.; Park, O.K.; Lim, S.S.; Kang, I.J.; Kwon, D.Y.; Park, J.; Yi, J.S.; Bae, Y.S.; Won, M.H. Neuroprotective effects of onion extract and quercetin against ischemic neuronal damage in the gerbil hippocampus. J. Med. Food, 2009, 12(5), 990-995.
[http://dx.doi.org/10.1089/jmf.2008.1400] [PMID: 19857061]
[85]
Sydserff, S.G.; Cross, A.J.; Green, A.R. The neuroprotective effect of chlormethiazole on ischaemic neuronal damage following permanent middle cerebral artery ischaemia in the rat. Neurodegeneration, 1995, 4(3), 323-328.
[http://dx.doi.org/10.1016/1055-8330(95)90022-5] [PMID: 8581565]
[86]
Cho, J.Y.; Kim, I.S.; Jang, Y.H.; Kim, A.R.; Lee, S.R. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci. Lett., 2006, 404(3), 330-335.
[http://dx.doi.org/10.1016/j.neulet.2006.06.010] [PMID: 16806698]
[87]
Singh, D.; Chander, V.; Chopra, K. The effect of quercetin, a bioflavonoid on ischemia/reperfusion induced renal injury in rats. Arch. Med. Res., 2004, 35(6), 484-494.
[http://dx.doi.org/10.1016/j.arcmed.2004.10.004] [PMID: 15631872]
[88]
Zhao, L.R.; Du, Y.J.; Chen, L.; Liu, Z.G.; Pan, Y.H.; Liu, J.F.; Liu, B. Quercetin protects against high glucose-induced damage in bone marrow-derived endothelial progenitor cells. Int. J. Mol. Med., 2014, 34(4), 1025-1031.
[http://dx.doi.org/10.3892/ijmm.2014.1852] [PMID: 25197782]
[89]
Wong, R.W.K.; Rabie, A.B.M. Effect of quercetin on bone formation. J. Orthop. Res., 2008, 26(8), 1061-1066.
[http://dx.doi.org/10.1002/jor.20638] [PMID: 18383168]
[90]
Prouillet, C.; Mazière, J.C.; Mazière, C.; Wattel, A.; Brazier, M.; Kamel, S. Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem. Pharmacol., 2004, 67(7), 1307-1313.
[http://dx.doi.org/10.1016/j.bcp.2003.11.009] [PMID: 15013846]
[91]
Höpfner, M.; Schuppan, D.; Scherübl, H. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer. World J. Gastroenterol., 2008, 14(1), 1-14.
[http://dx.doi.org/10.3748/wjg.14.1] [PMID: 18176955]
[92]
Cuevas, M.J.; Tieppo, J.; Marroni, N.P.; Tuñón, M.J.; González-Gallego, J. Suppression of amphiregulin/epidermal growth factor receptor signals contributes to the protective effects of quercetin in cirrhotic rats. J. Nutr., 2011, 141(7), 1299-1305.
[http://dx.doi.org/10.3945/jn.111.140954] [PMID: 21562239]
[93]
Nones, J.; Spohr, T.C.; Gomes, F.C. Effects of the flavonoid hesperidin in cerebral cortical progenitors in vitro: indirect action through astrocytes. Int. J. Dev. Neurosci., 2012, 30(4), 303-313.
[http://dx.doi.org/10.1016/j.ijdevneu.2012.01.008] [PMID: 22322314]
[94]
Yuan, Z.; Yao, F.; Hu, Z.; Sun, S.; Wu, B. Quercetin inhibits the migration and proliferation of astrocytes in wound healing. Neuroreport, 2015, 26(7), 387-393.
[http://dx.doi.org/10.1097/WNR.0000000000000352] [PMID: 25793633]
[95]
McKay, T.B.; Karamichos, D. Quercetin and the ocular surface: What we know and where we are going. Exp. Biol. Med. (Maywood), 2017, 242(6), 565-572.
[http://dx.doi.org/10.1177/1535370216685187] [PMID: 28056553]
[96]
McKay, T.B.; Lyon, D.; Sarker-Nag, A.; Priyadarsini, S.; Asara, J.M.; Karamichos, D. Quercetin attenuates lactate production and extracellular matrix secretion in keratoconus. Sci. Rep., 2015, 5, 9003.
[http://dx.doi.org/10.1038/srep09003] [PMID: 25758533]
[97]
McKay, T.B.; Sarker-Nag, A.; Lyon, D.; Asara, J.M.; Karamichos, D. Quercetin modulates keratoconus metabolism in vitro. Cell Biochem. Funct., 2015, 33(5), 341-350.
[http://dx.doi.org/10.1002/cbf.3122] [PMID: 26173740]
[98]
Suter, V.G.A.; Sjölund, S.; Bornstein, M.M. Effect of laser on pain relief and wound healing of recurrent aphthous stomatitis: a systematic review. Lasers Med. Sci., 2017, 32(4), 953-963.
[http://dx.doi.org/10.1007/s10103-017-2184-z] [PMID: 28345122]
[99]
Hamdy, A.A.E.M.; Ibrahem, M.A.E. Management of aphthous ulceration with topical quercetin: a randomized clinical trial. J. Contemp. Dent. Pract., 2010, 11(4), E009-E016.
[http://dx.doi.org/10.5005/jcdp-11-4-9] [PMID: 20953559]
[100]
Gómez-Florit, M.; Monjo, M.; Ramis, J.M. Identification of quercitrin as a potential therapeutic agent for periodontal applications. J. Periodontol., 2014, 85(7), 966-974.
[http://dx.doi.org/10.1902/jop.2014.130438] [PMID: 24548116]
[101]
Singh, D.P.; Borse, S.P.; Nivsarkar, M. Co-administration of quercetin with pantoprazole sodium prevents NSAID-induced severe gastroenteropathic damage efficiently: Evidence from a preclinical study in rats. Exp. Toxicol. Pathol., 2017, 69(1), 17-26.
[http://dx.doi.org/10.1016/j.etp.2016.10.004] [PMID: 27780667]
[102]
El Goweini, M.F.; Nour El Din, N.M. Effect of Quercetin on Excessive Dermal Scarring; EDOJ, 2005, p. 1.
[103]
Phan, T.T.; Sun, L.; Bay, B.H.; Chan, S.Y.; Lee, S.T. Dietary compounds inhibit proliferation and contraction of keloid and hypertrophic scar-derived fibroblasts in vitro: therapeutic implication for excessive scarring. J. Trauma, 2003, 54(6), 1212-1224.
[http://dx.doi.org/10.1097/01.TA.0000030630.72836.32] [PMID: 12813346]
[104]
Long, X.; Zeng, X.; Zhang, F.Q.; Wang, X.J. Influence of quercetin and x-ray on collagen synthesis of cultured human keloid-derived fibroblasts. Chin. Med. Sci. J., 2006, 21(3), 179-183.
[PMID: 17086741]
[105]
Mathangi Ramakrishnan, K.; Babu, M.; Lakshmi Madhavi, M.S. Response of keloid fibroblasts to Vitamin D3 and quercetin treatment - in vitro study. Ann. Burns Fire Disasters, 2015, 28(3), 187-191.
[PMID: 27279805]
[106]
Gouma, E.; Simos, Y.; Verginadis, I.; Batistatou, A.; Karkabounas, S.; Evangelou, A.; Ragos, V.; Peschos, D. Healing effect of quercetin on full thickness epidermal thermal injury in wistar rats. Int. J. Phytomed., 2016, 8, 277-281.
[107]
Vicentini, F.T.M.C.; He, T.; Shao, Y.; Fonseca, M.J.V.; Verri, W.A., Jr; Fisher, G.J.; Xu, Y. Quercetin inhibits UV irradiation-induced inflammatory cytokine production in primary human keratinocytes by suppressing NF-κB pathway. J. Dermatol. Sci., 2011, 61(3), 162-168.
[http://dx.doi.org/10.1016/j.jdermsci.2011.01.002] [PMID: 21282043]
[108]
Horton, J.A.; Li, F.; Chung, E.J.; Hudak, K.; White, A.; Krausz, K.; Gonzalez, F.; Citrin, D. Quercetin inhibits radiation-induced skin fibrosis. Radiat. Res., 2013, 180(2), 205-215.
[http://dx.doi.org/10.1667/RR3237.1] [PMID: 23819596]
[109]
Gopalakrishnan, A.; Ram, M.; Kumawat, S.; Tandan, S.; Kumar, D. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J. Exp. Biol., 2016, 54(3), 187-195.
[PMID: 27145632]
[110]
Doersch, K.M.; Newell-Rogers, M.K. The impact of quercetin on wound healing relates to changes in αV and β1 integrin expression. Exp. Biol. Med. (Maywood), 2017, 242(14), 1424-1431.
[http://dx.doi.org/10.1177/1535370217712961] [PMID: 28549404]
[111]
Prasain, J.K.; Barnes, S. Metabolism and bioavailability of flavonoids in chemoprevention: current analytical strategies and future prospectus. Mol. Pharm., 2007, 4(6), 846-864.
[http://dx.doi.org/10.1021/mp700116u] [PMID: 18052086]
[112]
Hung, C.F.; Fang, C.L.; Al-Suwayeh, S.A.; Yang, S.Y.; Fang, J.Y. Evaluation of drug and sunscreen permeation via skin irradiated with UVA and UVB: comparisons of normal skin and chronologically aged skin. J. Dermatol. Sci., 2012, 68(3), 135-148.
[http://dx.doi.org/10.1016/j.jdermsci.2012.09.005] [PMID: 23026054]
[113]
Hatahet, T.; Morille, M.; Hommoss, A.; Devoisselle, J.M.; Müller, R.H.; Bégu, S. Quercetin topical application, from conventional dosage forms to nanodosage forms. Eur. J. Pharm. Biopharm., 2016, 108, 41-53.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.011] [PMID: 27565033]
[114]
Montenegro, L.; Carbone, C.; Maniscalco, C.; Lambusta, D.; Nicolosi, G.; Ventura, C.A.; Puglisi, G. In vitro evaluation of quercetin-3-O-acyl esters as topical prodrugs. Int. J. Pharm., 2007, 336(2), 257-262.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.003] [PMID: 17257788]
[115]
Censi, R.; Martena, V.; Hoti, E.; Malaj, L.; Di Martino, P. Permeation and skin retention of quercetin from microemulsions containing Transcutol® P. Drug Dev. Ind. Pharm., 2012, 38(9), 1128-1133.
[http://dx.doi.org/10.3109/03639045.2011.641564] [PMID: 22188183]
[116]
Vicentini, F.T.M.C.; Simi, T.R.M.; Del Ciampo, J.O.; Wolga, N.O.; Pitol, D.L.; Iyomasa, M.M.; Bentley, M.V.L.B.; Fonseca, M.J.V. Quercetin in w/o microemulsion: in vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur. J. Pharm. Biopharm., 2008, 69(3), 948-957.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.012] [PMID: 18304790]
[117]
Dias, A.M.A.; Braga, M.E.M.; Seabra, I.J.; Ferreira, P.; Gil, M.H.; de Sousa, H.C. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int. J. Pharm., 2011, 408(1-2), 9-19.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.063] [PMID: 21316432]
[118]
Tan, Q.; Liu, W.; Guo, C.; Zhai, G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int. J. Nanomedicine, 2011, 6, 1621-1630.
[http://dx.doi.org/10.2147/IJN.S22411] [PMID: 21904452]
[119]
Vedakumari, W.S.; Ayaz, N.; Karthick, A.S.; Senthil, R.; Sastry, T.P. Quercetin impregnated chitosan-fibrin composite scaffolds as potential wound dressing materials - Fabrication, characterization and in vivo analysis. Eur. J. Pharm. Sci., 2017, 97, 106-112.
[http://dx.doi.org/10.1016/j.ejps.2016.11.012] [PMID: 27864063]
[120]
Chen-yu, G.; Chun-fen, Y.; Qi-lu, L.; Qi, T.; Yan-wei, X.; Wei-na, L.; Guang-xi, Z. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int. J. Pharm., 2012, 430(1-2), 292-298.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.042] [PMID: 22486962]
[121]
Bose, S.; Du, Y.; Takhistov, P.; Michniak-Kohn, B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm., 2013, 441(1-2), 56-66.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.013] [PMID: 23262430]
[122]
Jangde, R.; Singh, D. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 635-641.
[http://dx.doi.org/10.3109/21691401.2014.975238] [PMID: 25375215]
[123]
Cadena, P.G.; Pereira, M.A.; Cordeiro, R.B.S.; Cavalcanti, I.M.F.; Barros Neto, B. Pimentel, Mdo.C.; Lima Filho, J.L.; Silva, V.L.; Santos-Magalhães, N.S. Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochim. Biophys. Acta, 2013, 1828(2), 309-316.
[http://dx.doi.org/10.1016/j.bbamem.2012.10.022] [PMID: 23103506]
[124]
Park, S.N.; Lee, M.H.; Kim, S.J.; Yu, E.R. Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system. Biochem. Biophys. Res. Commun., 2013, 435(3), 361-366.
[http://dx.doi.org/10.1016/j.bbrc.2013.04.093] [PMID: 23669037]
[125]
Manca, M.L.; Castangia, I.; Caddeo, C.; Pando, D.; Escribano, E.; Valenti, D.; Lampis, S.; Zaru, M.; Fadda, A.M.; Manconi, M. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids Surf. B Biointerfaces, 2014, 123, 566-574.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.059] [PMID: 25444664]
[126]
Liu, D.; Hu, H.; Lin, Z.; Chen, D.; Zhu, Y.; Hou, S.; Shi, X. Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J. Photochem. Photobiol. B, 2013, 127, 8-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.07.014] [PMID: 23933244]
[127]
Chessa, M.; Caddeo, C.; Valenti, D.; Manconi, M.; Sinico, C.; Fadda, A.M. Effect of penetration enhancer containing vesicles on the percutaneous delivery of quercetin through new born pig skin. Pharmaceutics, 2011, 3(3), 497-509.
[http://dx.doi.org/10.3390/pharmaceutics3030497] [PMID: 24310593]
[128]
Caddeo, C.; Díez-Sales, O.; Pons, R.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: in vivo and in vitro evaluation. Pharm. Res., 2014, 31(4), 959-968.
[http://dx.doi.org/10.1007/s11095-013-1215-0] [PMID: 24297068]
[129]
Castangia, I.; Nácher, A.; Caddeo, C.; Valenti, D.; Fadda, A.M.; Díez-Sales, O.; Ruiz-Saurí, A.; Manconi, M. Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomater., 2014, 10(3), 1292-1300.
[http://dx.doi.org/10.1016/j.actbio.2013.11.005] [PMID: 24239901]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy