Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Recent Advances of Water-Soluble Fullerene Derivatives in Biomedical Applications

Author(s): Xiaoyan Zhang, Hailin Cong*, Bing Yu and Qun Chen

Volume 16, Issue 1, 2019

Page: [92 - 99] Pages: 8

DOI: 10.2174/1570193X15666180712114405

Price: $65

Abstract

Fullerenes, especially C60, exhibit great potential applications in biology field, due to their excellent antibacterial, antiviral, antitumor and other properties. Many water-soluble fullerene derivatives have been designed, synthesized and used as photo-dynamic therapy agents, antiviral agents, bioimaging agents, drug carriers and so on. This review focuses on the usage of water-soluble fullerene derivatives in biomedical field in recent years. The first half gives the preparation of water-soluble fullerene derivatives themselves with covalent bonds and non-covalent bonds. In the second half, myriad applications of water-soluble fullerene derivatives in biomedical field are introduced.

Keywords: Fullerenes, fullerenol, water-soluble, biomedical, photo-dynamic therapy agents, sugar.

« Previous
Graphical Abstract

[1]
Kroto, H.W.; Heath, J.R.; Obrien, S.C.; Curl, R.F.; Smalley, R.E.C. 60: Buckminsterfulleren. Nature, 1985, 318, 162-163.
[2]
Krätschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: A new form of carbon. Nature, 1990, 347, 354-358.
[3]
Giacalone, F.; Martín, N. Fullerene polymers: Synthesis and properties. Chem. Rev., 2006, 106, 5136-5190.
[4]
Tzirakis, M.D.; Orfanopoulos, M. Radical reactions of fullerenes: From synthetic organic chemistry to materials science and biology. Chem. Rev., 2013, 113, 5262-5321.
[5]
Luczkowiak, J.; Muñoz, A.; Sánchez-Navarro, M.; Ribeiro-Viana, R.; Ginieis, A.; Illescas, B.M.; Martín, N.; Delgado, R.; Rojo, J. Glycofullerenes inhibit viral infection. Biomacromolecules, 2013, 14, 431-437.
[6]
Wharton, T.; Wilson, L.J. Highly-iodinated fullerene as a contrast agent for X-ray imaging. Bioorg. Med. Chem., 2002, 10, 3545-3554.
[7]
Friedman, S.H.; DeCamp, D.L.; Sijbesma, R.P.; Srdanov, G.; Wudl, F.; Kenyon, G.L. Inhibition of the HIV-1 protease by fullerene derivatives: Model building studies and experimental verification. J. Am. Chem. Soc., 1993, 115, 6506-6509.
[8]
Muñoz, A.; Sigwalt, D.; Illescas, B.M.; Luczkowiak, J.; Rodrígues-Pérez, L.; Nierengarten, I.; Holler, M.; Remy, J.S.; Buffet, K.; Vincent, S.P.; Rojo, J.; Delgado, R.; Nierengarten, J.F.; Martín, N. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem., 2016, 8, 50-57.
[9]
Scaffaro, R.; Maio, A.; Lopresti, F.; Botta, L. Nanocarbons in electrospun polymeric nanomats for tissue engineering: A review. Polymers, 2017, 9, 76.
[10]
Yan, W.; Seifermann, S.M.; Pierrat, P.; Bräse, S. Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org. Biomol. Chem., 2015, 13, 25-54.
[11]
Motoyanagi, J.; Kurata, A.; Minoda, M. Self-assembly behavior of amphiphilic C60-end-capped poly(vinyl ether)s in water and dissociation of the aggregates by the complexing of the C60 moieties with externally added γ-cyclodextrins. Langmuir, 2015, 31, 2256-2261.
[12]
Eskandari, M.; Najdian, A.; Soleyman, R. Investigation on the interactions between fullerene and β-CD-g-hyperbranched polyglycerol to produce water-soluble fullerene. Chem. Phys., 2016, 472, 9-17.
[13]
Cao, R.; Wu, S. In silico properties characterization of water-soluble γ-cyclodextrin bi-capped C60 complex: Free energy and geometrical insights for stability and solubility. Carboh. Polym., 2015, 124, 188-195.
[14]
Gan, T.; Hu, C.; Sun, Z.; Hu, S. Facile synthesis of water-soluble fullerene-graphene oxide composites for electrodeposition of phosphotungstic acid-based electrocatalysts. Electrochim. Acta, 2013, 111, 738-745.
[15]
Bhoi, V.I.; Kumar, S.; Murthy, C.N. The self-assembly and aqueous solubilization of [60]fullerene with disaccharides. Carbohydr. Res., 2012, 359, 120-127.
[16]
Liu, Y.; Jin, J.; Deng, H.; Li, K.; Zheng, Y.; Yu, C.; Zhou, Y. Protein-framed multi-porphyrin micelles for a hybrid natural-artificial light-harvesting nanosystem. Angew. Chem. Int. Ed., 2016, 55, 7952-7957.
[17]
Wang, R.; Qu, R.; Jing, C.; Zhai, Y.; An, Y.; Shi, L. Zinc porphyrin/fullerene/block copolymer micelle for enhanced electron transfer ability and stability. RSC Adv, 2017, 7, 10100-10107.
[18]
Gimutdinova, A.A.; Gubskaya, V.P.; Fazleeva, G.M.; Latypov, S.K.; Zhelonkina, T.A.; Sharafutdinova, D.R.; Nuretdinov, I.A.; Sinyashin, O.G. Synthesis and properties of new fullerene C60 derivatives, containing acetonide and polyol fragments. Tetrahedron, 2014, 70, 5947-5953.
[19]
Kalacheva, N.V.; Gubskaya, V.P.; Fazleeva, G.M.; Igtisamova, G.R.; Nuretdinov, I.A.; Rizavnov, A.A.; Cherepnev, G.V. Novel water-soluble methanofullerenes C60[C13H18O4(OH)4]6 and C60[C9H10O4(OH)4]6: Promising uncouplers of respiration and phosphorylation. Bioorg. Med. Chem. Lett., 2015, 25, 5250-5253.
[20]
Jiang, G.; Yin, F.; Duan, J.; Li, G. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy. J. Mater. Sci. Mater. Med., 2015, 26, 1-7.
[21]
Mikata, Y.; Takagi, S.; Tanahashi, M.; Ishii, S.; Obata, M.; Miyamoto, Y.; Wakita, K.; Nishisaka, T.; Hirano, T.; Ito, T.; Hoshino, M.; Ohtsuki, C.; Tanihara, M.; Yano, S. Detection of 1270 nm emission from singlet oxygen and photocytotoxic property of sugar-pendant [60] fullerenes. Bioorg. Med. Chem. Lett., 2003, 13, 3289-3292.
[22]
Otake, E.; Sakuma, S.; Torii, K.; Maeda, A.; Ohi, H.; Yano, S.; Morita, A. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Photochem. Photobiol., 2010, 86, 1356-1363.
[23]
Yano, S.; Naemura, M.; Toshimitsu, A.; Akiyama, M.; Ikeda, A.; Kikuchi, J.; Shen, X.; Duan, Q.; Narumi, A.; Inoue, M.; Ohkubo, K.; Fukuzumi, S. Efficient singlet oxygen generation from sugar pendant C60 derivatives for photodynamic therapy. Chem. Commun., 2015, 51, 16605-16608.
[24]
Semenov, K.N.; Meshcheriakov, A.A.; Charykov, N.A.; Dmitrenko, M.E.; Keskinov, V.A.; Murin, I.V.; Panova, G.G.; Sharoyko, V.V.; Kanash, E.V.; Khomyakov, Y.V. Physico-chemical and biological properties of C60-L-hydroxyproline water solutions. RSC Adv, 2017, 7, 15189-15200.
[25]
Stasheuski, A.S.; Galievsky, V.A.; Stupak, A.P.; Dzhagarov, B.M.; Choi, M.J.; Chung, B.H.; Jeong, J.Y. Photophysical properties and singlet oxygen generation efficiencies of water-soluble fullerene nanoparticles. Photochem. Photobiol., 2014, 90, 997-1003.
[26]
Oriana, S.; Aroua, S.; Söllner, J.O.B.; Ma, X-J.; Iwamoto, Y.; Yamakoshi, Y. Water-soluble C60- and C70-PVP polymers for biomaterials with efficient 1O2 generation. Chem. Commun. (Camb.), 2013, 49, 9302-9304.
[27]
Arbogast, J.W.; Darmanyan, A.P.; Foote, C.S.; Rubin, Y.; Diederich, F.N.; Alvarez, M.M.; Anz, S.J.; Whetten, R.L. Photophysical properties of sixty atom carbon molecule (C60). J. Phys. Chem., 1991, 95, 11-12.
[28]
Arbogast, J.W.; Foote, C.S.; Kao, M. Electron transfer to triplet C60. J. Am. Chem. Soc., 1992, 114, 2277-2279.
[29]
Yamakoshi, Y.; Aroua, S.; Nguyen, T-M.D.; Iwamoto, Y.; Ohnishi, T. Water-soluble fullerene materials for bioapplications: Photoinduced reactive oxygen species generation. Faraday Discuss., 2014, 173, 287-296.
[30]
Shi, J.; Yu, X.; Wang, L.; Liu, Y.; Gao, J.; Zhang, J.; Ma, R.; Liu, R.; Zhang, Z. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials, 2013, 34, 9666-9677.
[31]
Yang, Y.; Yu, M.; Song, H.; Wang, Y.; Yu, C. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy. Nanoscale, 2015, 7, 11894-11898.
[32]
Shi, J.; Chen, Z.; Wang, L.; Wang, B.; Xu, L.; Hou, L.; Zhang, Z. A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging. Acta Biomater., 2016, 29, 282-297.
[33]
Zhang, W.; Gong, X.; Liu, C.; Piao, Y.; Sun, Y.; Diao, G. Water-soluble inclusion complex of fullerene with g-cyclodextrin polymer for photodynamic therapy. J. Mater. Chem. B, 2014, 2, 5107-5115.
[34]
Ballatore, M.B.; Spesia, M.B.; Milanesio, M.E.; Durantini, E.N. Synthesis, spectroscopic properties and photodynamic activity of porphyrin-fullerene C60 dyads with application in the photodynamic inactivation of Staphylococcus aureus. Eur. J. Med. Chem., 2014, 83, 685-694.
[35]
Hu, Z.; Zhao, F.; Wang, Y.; Huang, Y.; Chen, L.; Li, N.; Li, J.; Li, Z.; Yi, G. Facile fabrication of a C-60-polydopamine-graphene nanohybrid for single light induced photothermal and photodynamic therapy. Chem. Commun., 2014, 50, 10815-10818.
[36]
Yu, C.; Avci, P.; Canteenwala, T.; Chiang, L.Y.; Chen, B.; Hamblin, M.R. Photodynamic therapy with hexa(sulfo-n-butyl)[60]fullerene against sarcoma in vitro and in vivo. J. Nanosci. Nanotechnol., 2016, 16, 171-181.
[37]
Belik, A.Y.; Rybkin, A.Y.; Voronov, I.I.; Goryachev, N.S.; Volyniuk, D.; Grazulevicius, J.V.; Troshin, P.A.; Kotelnikov, A.I. Non-covalent complexes of polycationic fullerene C60 derivative with xanthene dyes-spectral and photochemical properties in water and in liposomes. Dyes Pigments, 2017, 139, 65-72.
[38]
Ikeda, A.; Mae, T.; Ueda, M.; Sugikawa, K.; Shigeto, H.; Funabashi, H.; Kuroda, A.; Akiyama, M. Improved photodynamic activities of liposome-incorporated [60]fullerene derivatives bearing a polar group. Chem. Commun., 2017, 53, 2966-2969.
[39]
Shi, J.; Liu, Y.; Wang, L.; Gao, J.; Zhang, J.; Yu, X.; Ma, R.; Liu, R.; Zhang, Z. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomater., 2014, 10, 1280-1291.
[40]
Prylutska, S.; Bilyy, R.; Overchuk, M. Bychko1, A.; Andreichenko, K.; Stoika, R.; Rybalchenko, V.; Prylutskyy, Y.; Tsierkezos, N.G.; Ritter, U. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J. Biomed. Nanotechnol., 2012, 8, 522-527.
[41]
Buffet, K.; Gillon, E.; Holler, M.; Nierengarten, J-F.; Imberty, A.; Vincent, S.P. Fucofullerenes as tight ligands of RSL and LecB, two bacterial lectins. Org. Biomol. Chem., 2015, 13, 6482-6492.
[42]
Xie, R.; Wang, Z.; Yu, H.; Fan, Z.; Yuan, F.; Li, Y.; Li, X.; Fan, L.; Fan, H. Highly water-soluble and surface charge-tunable fluorescent fullerene nanoparticles: Facile fabrication and cellular imaging. Electrochimica. Acta, 2016, 201, 220-227.
[43]
Liu, W.; Wei, J.; Chen, Y.; Huo, P.; Wei, Y. Electrospinning of poly(L-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application. ACS Appl. Mater. Interfaces, 2013, 5, 680-685.
[44]
Tan, L.; Wu, T.; Tang, Z.; Xiao, J.; Zhuo, R.; Shi, B.; Liu, C. Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging. Nanotechnology, 2016, 27, 315104.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy