Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Electrochemical Analysis of Antipsychotics

Author(s): Leyla Karadurmus, Duru Kır, Sevinc Kurbanoglu* and Sibel A. Ozkan*

Volume 15, Issue 5, 2019

Page: [413 - 428] Pages: 16

DOI: 10.2174/1573412914666180710114458

Price: $65

Abstract

Introduction: Schizophrenia is seizures accompanied by severe psychotic symptoms, and a steady state of continuation in the form of periods of stagnation. Antipsychotics are now the basis of treatment for schizophrenia and there is no other molecule that is antipsychotic priority in treatment. Antipsychotics can be classified into two groups; dopamine receptor antagonists such as promazine, fluphenazine etc. and serotonin-dopamine antagonists including risperidone, olanzapine, ziprasidone, aripiprazole etc.

Materials and Methods: Electrochemical methods have been used for the determination of antipsychotic agent just as used in the determination of many drug agents. Nearly all of the antipsychotics are electroactive and can be analyzed by electrochemical methods. Electroanalytical methods offer generally high sensitivity, are compatible with modern techniques, have low cost, low requirements, and compact design. Among the most commonly used types, there are cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and linear sweep voltammetry.

Conclusion: The aim of this review is to evaluate the main line and the advantages and uses of electroanalytical methods that employed for the determination of antipsychotic medication agents used in schizophrenia. Moreover, applications of the methods to pharmaceutical analysis of Antipsychotics upto- date is also summarized in a table.

Keywords: Electroanalytical methods, antipsychotic agents, drug analysis, voltammetry, Schizophrenia, seizures.

Next »
Graphical Abstract

[1]
Sadock, B.J.; Sadock, V.A. Çeviri editörü Bozkurt A. Kaplan & Sadock Klinik Psikiyatri. 4.baskı İstanbul: Güneş Tıp Kitapevleri 2009.
[2]
Arinami, T.; Hamaguchi, H.; Itokawa, M.; Enguchi, H.; Tagaya, H.; Yano, S.; Shimizu, H. Association of dopamine D2 receptor molecular variant with schizophrenia. Lancet, 1994, 343(8899), 703-704.
[3]
Kane, J.M.; Correll, C.U. Pharmacologic treatment of schizophrenia. Dialogues Clin. Neurosci., 2010, 12(3), 345.
[4]
Van Os, J.; Kapur, S. Schizophrenia. Lancet, 2009, 374, 635-645.
[5]
Hennekens, C.H.; Hennekens, A.R.; Hollar, D.; Casey, D.E. Schizophrenia and increased risks of cardiovascular disease. Am. Heart J., 2005, 150, 1115-1121.
[6]
Saha, S.; Chant, D.; McGrath, J. A systematic review of mortality in schizophrenia: Is the differential mortality gap worsening over time. Arch. Gen. Psychiatry, 2007, 64, 1123-1131.
[7]
Lehman, A.F.; Lieberman, J.A.; Dixon, L.B.; McGlashan, T.H.; Miller, A.L.; Perkins, D.O.; Cook, I. Practice guideline for the treatment of partients with schizophrenia. Am. J. Psychiatry, 2004, 161.
[8]
De Hert, M.; Hudyana, H.; Dockx, L.; Bernagie, C.; Sweers, K.; Tack, J.; Leucht, S.; Peuskens, J. Second-generation antipsychotics and constipation: A review of the literature. Eur. Psychiatry, 2011, 26, 34-44.
[9]
Patteet, L.; Morrens, M.; Maudens, K.E.; Niemegeers, P.; Sabbe, B.; Neels, H. Therapeutic drug monitoring of common antipsychotics. Ther. Drug Monit., 2012, 34, 629-651.
[10]
Patteet, L.; Cappelle, D.; Maudens, K.E.; Crunelle, C.L.; Sabbe, B.; Neels, H. Advances in detection of antipsychotics in biological matrices. Clin. Chim. Acta, 2015, 441, 11-22.
[11]
López-Muñoz, F.; Alamo, C.; Cuenca, E.; Shen, W.W.; Clervoy, P.; Rubio, G. History of the discovery and clinical introduction of chlorpromazine. Ann. Clin. Psychiatry, 2005, 17(3), 113-135.
[12]
Marder, S.R.; Van Kammen, D.P. Dopamine Recepto Antagonists in: Comprehensive Textbook of Psychiatry: Sadock, B.J; Sadock, V.A., Ed.; Lippincott Williams&Wilkins: Philadelphia, 2000, pp. 2356-2376.
[13]
Lieberman, J.A. Understanding the mechanism of action of atypical antipsychotic drugs. Br. J. Psychiatry, 1993, 163(Suppl. 22), 7-18.
[14]
Saunders, J.C. Lasker Award: Priority Claim. JAMA, 1965, 191(10), 865-865.
[15]
Marder, S.R.; Van Putten, T. Antipsychotic Medications. In: Schatzberg, A.F.; Nemeroff, C.B.; Eds. Textbook of PsychopharmacologyAmerican Psychiatric Pres; , 1995. 247-261
[16]
National Institute of Mental Health. (n.d.). What Medications are Used to Treat Schizophrenia. Retrieved: from . www.nimh.nih.gov/health/publications/mental-health-medications/what-medications-are-used-to-treat-schizophrenia.shtml
[17]
Coyle, J.T. Glutamate and schizophrenia: Beyond the dopamine hypothesis. Cell. Mol. Neurobiol., 2006, 26, 365.
[18]
Karam, C.S.; Ballon, J.S.; Bivens, N.M.; Freyberg, Z.; Girgis, R.R.; Lizardi-Ortiz, J.E.; Javitch, J.A. Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends Pharmacol. Sci., 2010, 31, 381.
[19]
Meltzer, H.Y.; Li, Z.; Kaneda, Y.; Ichikawa, J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27, 1159.
[20]
Danna, C.L.; Elmer, G.I. Disruption of conditioned reward association by typical and atypical antipsychotics. Pharmacol. Biochem. Behav., 2010, 96(1), 40-47.
[21]
Kaplan, H.I.; Sadock, B.J. Schizophrenia. In: Synopsis of Psychiatry, 8. baskı; Baltimore Williams & Wilkins, 1998; pp. 456-492.
[22]
Miyamoto, S.; Duncan, G.E.; Marx, C.E.; Lieberman, J.A. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry, 2005, 10(1), 79.
[23]
Buckley, P.F.; Meltzer, H.Y. Treatment of schizophrenia. In: Textbook of Psychopharmacology: Schatzberg, A.F.; Nemeroff, C.B; Eds, Washington American Psychiatric Press, 1995; pp. 615-639.
[24]
The British Pharmacopeia, The Stationary Office, vol. 2, London. 2010. pp. 1295-1297.
[25]
Banh, H.L. Management of delirium in adult critically ill patients: an overview. Pharm. Pharmaceut. Sci., 2012, 15(4), 499-509.
[26]
Seeman, P. Atypical antipsychotics: mechanism of action. Can. J. Psychiatry, 2002, 47(1), 27-38.
[27]
Wu, S.; Xing, Q.; Gao, R.; Li, X.; Gu, N.; Feng, G.; He, L. Response to chlorpromazine treatment may be associated with polymorphisms of the DRD2 gene in Chinese schizophrenic patients. Neurosci. Lett., 2005, 376(1), 1-4.
[28]
Sean, C.S. The extra pharmacopoeia The complete drug reference; London Pharmaceutical Press, 2001.
[29]
Brittain, H. G. Profiles of drug substances, excipients and related methodology (Vol. 41). Academic Press. 2016.
[30]
Colvin, C.L.; Tankanow, R.M. Pimozide: use in Tourette’s Syndrome. Drug Intell. Clin. Pharm., 1985, 19, 421-424.
[31]
Thanacoody, H.K.R. Thioridazine: The good and the bad. Rec. Pat. AntiInfect. Drug. Discov., 2011, 6, 92-98.
[32]
Breier, A.; Berg, P.H. The psychosis of schizophrenia: prevalence, response to atypical antipsychotics, and prediction of outcome. Biol. Psychiatry, 1999, 46, 361.
[33]
Leucht, S.; Kissling, W.; Davis, J.M. Second-generation antipsychotics for schizophrenia: can we resolve the conflict? Psychol. Med., 2009, 39, 1591-1602.
[34]
Kasteng, F.; Eriksson, J.; Sennfalt, K.; Lindgren, P. Metabolic effects and cost effectiveness of aripiprazole versus olanzapine in schizophrenia and bipolar disorder. Acta Psychiatr. Scand., 2011, 124, 214-225.
[35]
Cheer, S.M.; Wagstaff, A.J. Quetiapine −A review of its use in the management of schizophrenia. CNS Drugs, 2004, 18(3), 173-199.
[36]
Tantawy, M.A.; Hassan, N.Y.; Elragehy, N.A.; Abdelkawy, M. Simultaneous determination of olanzapine and fluoxetine hydrochloride in capsules by spectrophotometry, TLC-spectrodensitometry and HPLC. J. Adv. Res., 2013, 4(2), 173-180.
[37]
Abel, K.; Howard, L. Schizophrenia, psychopharmacology and pregnancy. In: Galbally, M.; Snellen, M.; Lewis, A. Eds.Psychopharmacology and Pregnancy: Treatment Efficacy, Risks, and Guidelines; Springer: Heidelberg, 2014.
[38]
Singh, K.P.; Singh, M.K.; Singh, M. Effects of prenatal exposure to antipsychotic risperidone on developmental neurotoxicity, apoptotic neurodegeneration and neurobehavioral sequelae in rat offspring. Int. J. Dev. Neurosci., 2016, 52, 13-23.
[39]
Brunton, L.L.; Lazo, J.S.; Parker, K.L. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 11th ed; McGraw-Hill: New York, 2006.
[40]
Jagodic, H.K.; Agius, M.; Pregelj, P. Psychopharmacotherapy prescription and suicidal behaviour. Psychiatr. Danub., 2013, 25, S324-S328.
[41]
Fakra, E.; Azorin, J.M. Clozapine for the treatment of schizophrenia. Expert Opin. Pharmacother., 2012, 13, 1923-1935.
[42]
Wiebelhaus, J.M.; Vunck, S.A.; Meltzer, H.Y.; Porter, J.H. Discriminative stimulus properties of N-desmethylclozapine, the major active metabolite of the atypical antipsychotic clozapine, in C57BL/6 mice. Behav. Pharmacol., 2012, 23, 262-270.
[43]
Özkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33(3), 155-181.
[44]
Özkan, S.A.; Uslu, B.; Sentürk, Z. Electroanalytical characteristics of amisulpride and voltammetric determination of the drug in pharmaceuticals and biological media. Electroanalysis, 2004, 16(3), 231-237.
[45]
Kurbanoglu, S.; Dogan-Topal, B.; Hlavata, L.; Labuda, J.; Ozkan, S.A.; Uslu, B. Electrochemical investigation of an interaction of the antidepressant drug aripiprazole with original and damaged calf thymus dsDNA. Electrochim. Acta, 2015, 169, 233-240.
[46]
Aşangil, D.; Taşdemir, İ.H.; Kılıc, E. Adsorptive stripping voltammetric methods for determination of aripiprazole. J. Pharm. Anal., 2012, 2(3), 193-199.
[47]
Merli, D.; Dondi, D.; Ravelli, D.; Tacchini, D.; Profumo, A. Electrochemistry and analytical determination of aripiprazole and octoclothepin at glassy carbon electrode. J. Electroanal. Chem., 2013, 711, 1-7.
[48]
Shrivastava, R.; Saxena, S.; Satsangee, S.P.; Jain, R. Graphene/TiO2/polyaniline nanocomposite based sensor for the electrochemical investigation of aripiprazole in pharmaceutical formulation. Ionics, 2015, 21(7), 2039-2049.
[49]
Saraji, M.; Bidgoli, A.A.H.; Ensafi, A.A.; Heydari-Bafrooei, E.; Farajmand, B. Highly sensitive determination of chlorpromazine by electrochemically treated pencil graphite fiber as both solid-phase microextraction fiber and working electrode for use in voltammetry method. Anal. Methods, 2013, 5(19), 5024-5030.
[50]
Zhang, Z.Q.; Chen, Z.G.; Yang, Z.G.; Zhang, H. Adsorptive voltammetric determination of chlorpromazine in the presence of Triton X-100. Microchem. J., 1996, 53(3), 282-289.
[51]
Mielech‐Łukasiewicz, K.; Puzanowska‐Tarasiewicz, H.; Panuszko, A. Electrochemical oxidation of phenothiazine derivatives at glassy carbon electrodes and their differential pulse and square‐wave voltammetric determination in pharmaceuticals. Anal. Lett., 2008, 41(5), 789-805.
[52]
Hajian, A.; Rafati, A.A.; Afraz, A.; Najafi, M. Electrosynthesis of polythiophene nanowires and their application for sensing of chlorpromazine. J. Electrochem. Soc., 2014, 161(9), B196-B200.
[53]
Amini, N.; Shamsipur, M.; Gholivand, M.B.; Naderi, K. Electrocatalytic and new electrochemical properties of chlorpromazine in to silica NPs/chloropromazine/Nafion nanocomposite: Application to nitrite detection at low potential. Microchem. J., 2017, 131, 43-50.
[54]
Amini, N.; Shamsipur, M.; Gholivand, M.B. Electrocatalytic oxidation of sulfide and electrochemical behavior of chloropromazine based on organic-inorganic hybrid nanocomposite. J. Mol. Catal.A Chem., 2015, 396, 245-253.
[55]
Ensafi, A.A.; Heydari, E. Determination of some phenothiazines compounds in pharmaceuticals and human body fluid by electrocatalytic oxidation at a glassy carbon electrode using methylene blue as a mediator. Anal. Lett., 2008, 41(13), 2487-2502.
[56]
Salimi, A.; Amini, N.; Naderi, K.; Ghafuori, H. Experimental and theoretical studies on electrocatalytic oxidation of arsenic (III) and iron (II) using chlorpromazine: Electrochemical and mechanistic study by digital simulation in liquid phase. J. Mol. Liq., 2017, 233, 100-105.
[57]
Parvin, M.H.; Golivand, M.B.; Najafi, M.; Shariaty, S.M. Carbon paste electrode modified with cobalt nanoparticles and its application to the electrocatalytic determination of chlorpromazine. J. Electroanal. Chem., 2012, 683, 31-36.
[58]
Jankowska-Śliwińska, J.; Dawgul, M.; Pijanowska, D.G. DNA intercalation-based amperometric biosensor for chlorpromazine detection. Procedia Eng., 2014, 87, 747-750.
[59]
Ni, Y.; Wang, L.; Kokot, S. Voltammetric determination of chlorpromazine hydrochloride and promethazine hydrochloride with the use of multivariate calibration. Anal. Chim. Acta, 2001, 439(1), 159-168.
[60]
Petković, B.B.; Kuzmanović, D.; Dimitrijević, T.; Krstić, M.P.; Stanković, D.M. Novel Strategy for Electroanalytical Detection of Antipsychotic Drugs Chlorpromazine and Thioridazine; Possibilities for Simultaneous Determination. Int. J. Electrochem. Sci., 2017, 12, 3709-3720.
[61]
Unnikrishnan, B.; Hsu, P.C.; Chen, S.M. A multipurpose voltammetric sensor for the determination of chlorpromazine in presence of acetaminophen, uric acid, dopamine and ascorbic acid. Int. J. Electrochem. Sci., 2012, 7, 11414-11425.
[62]
Parvin, M.H. Graphene paste electrode for detection of chlorpromazine. Electrochem. Commun., 2011, 13(4), 366-369.
[63]
Karimi, M.A.; Hatefi-Mehrjardi, A.; Ardakani, M.M.; Ardakani, R.B.; Mashhadizadeh, M.H.; Sargazi, S. Electrocatalytic determination of chlorpromazine drug using Alizarin Red S as a mediator on the glassy carbon electrode. Russ. J. Electrochem., 2011, 47(1), 34-41.
[64]
Ensafi, A.A.; Taei, M.; Khayamian, T.; Karimi-Maleh, H.; Hasanpour, F. Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J. Solid State Electrochem., 2010, 14(8), 1415-1423.
[65]
Jiangwen, L.; Faqiong, Z.; Ping, X.; Baizhao, Z. Voltammetric behavior of chlorpromazine at glassy carbon electrodes modified with room temperature ionic liquid 1-buty-3-methylimidazolium hexafluorophate. Chin. J. Anal. Chem., 2006, 34, S5-S9.
[66]
Ferancová, A.; Korgová, E.; Buzinkaiová, T.; Kutner, W.; Štěpánek, I.; Labuda, J. Electrochemical sensors using screen-printed carbon electrode assemblies modified with the β-cyclodextrin or carboxymethylated β-cyclodextrin polymer films for determination of tricyclic antidepressive drugs. Anal. Chim. Acta, 2001, 447(1), 47-54.
[67]
Izadyar, A.; Arachchige, D.R.; Cornwell, H.; Hershberger, J.C. Ion transfer stripping voltammetry for the detection of nanomolar levels of fluoxetine, citalopram, and sertraline in tap and river water samples. Sens. Actuators B Chem., 2016, 223, 226-233.
[68]
Daneshvar, L.; Rounaghi, G.H. Es’ haghi, Z.; Chamsaz, M.; Tarahomi, S. Fabrication a new modified electrochemical sensor based on Au-Pd bimetallic nanoparticle decorated graphene for citalopram determination. Mater. Sci. Eng. C, 2016, 69, 653-660.
[69]
Keypour, H.; Saremi, S.G.; Veisi, H.; Noroozi, M. Electrochemical determination of citalopram on new Schiff base functionalized magnetic Fe 3 O 4 nanoparticle/MWCNTs modified glassy carbon electrode. J. Electroanal. Chem., 2016, 780, 160-168.
[70]
Gholivand, M.B.; Akbari, A. A novel voltammetric sensor for citalopram based on multiwall carbon nanotube (poly (p-aminobenzene sulfonic acid)/β-cyclodextrin). Mater. Sci. Eng. C, 2016, 62, 480-488.
[71]
Ghaedi, H.; Afkhami, A.; Madrakian, T.; Soltani-Felehgari, F. Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. Mater. Sci. Eng. C, 2016, 59, 847-854.
[72]
Nouws, H.P.; Delerue‐Matos, C.; Barros, A.A. Electrochemical determination of citalopram by adsorptive stripping voltammetry-determination in pharmaceutical products. Anal. Lett., 2006, 39(9), 1907-1915.
[73]
Lejeune, R. Adsorptive stripping voltammetry of clotiapine at a hanging mercury drop electrode. Anal. Chim. Acta, 1992, 256(1), 59-63.
[74]
Tammari, E.; Nezhadali, A.; Lotfi, S.; Veisi, H. Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe 3 O 4/β-alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples. Sens. Act. B. Chem., 2017, 241, 879-886.
[75]
Shahrokhian, S.; Kamalzadeh, Z.; Hamzehloei, A. Electrochemical determination of Clozapine on MWCNTs/New Coccine doped PPY modified GCE: An experimental design approach. Bioelectrochemistry, 2013, 90, 36-43.
[76]
Mashhadizadeh, M.H.; Afshar, E. Electrochemical investigation of clozapine at TiO 2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochim. Acta, 2013, 87, 816-823.
[77]
Hammam, E.; Tawfik, A.; Ghoneim, M.M. Adsorptive stripping voltammetric quantification of the antipsychotic drug clozapine in bulk form, pharmaceutical formulation and human serum at a mercury electrode. J. Pharm. Biomed. Anal., 2004, 36(1), 149-156.
[78]
Huang, F.; Qu, S.; Zhang, S.; Liu, B.; Kong, J. Sensitive detection of clozapine using a gold electrode modified with 16-mercaptohexadecanoic acid self-assembled monolayer. Talanta, 2007, 72(2), 457-462.
[79]
Kim, E.; Chocron, S.E.; Ben‐Yoav, H.; Winkler, T.E.; Liu, Y.; Glassman, M.; Payne, G.F. Programmable “Semismart” Sensor: Relevance to Monitoring Antipsychotics. Adv. Funct. Mater., 2015, 25(14), 2156-2165.
[80]
Ben-Yoav, H.; Winkler, T.E.; Kim, E.; Chocron, S.E.; Kelly, D.L.; Payne, G.F.; Ghodssi, R. Redox cycling-based amplifying electrochemical sensor for in situ clozapine antipsychotic treatment monitoring. Electrochim. Acta, 2014, 130, 497-503.
[81]
Arvand, M.; Shiraz, M.G. Voltammetric determination of clozapine in pharmaceutical formulations and biological fluids using an in situ surfactant‐modified carbon ionic liquid electrode. Electroanalysis, 2012, 24(3), 683-690.
[82]
Ben-Yoav, H.; Chocron, S.E.; Winkler, T.E.; Kim, E.; Kelly, D.L.; Payne, G.F.; Ghodssi, R. An electrochemical micro-system for clozapine antipsychotic treatment monitoring. Electrochim. Acta, 2015, 163, 260-270.
[83]
Farhadi, K.; Karimpour, A. Electrochemical behavior and determination of clozapine on a glassy carbon electrode modified by electrochemical oxidation. Anal. Sci., 2007, 23(4), 479-483.
[84]
Farhadi, K.; Yamchi, R.H.; Sabzi, R. Electrochemical study of interaction between clozapine and DNA and its analytical application. Anal. Lett., 2007, 40(9), 1750-1762.
[85]
Fat, M.R.; Almasifar, D. Electrochemical sensor for square wave voltammetric determination of clozapine by glassy carbon electrode modified by wo 3 nanoparticles. IEEE Sens. J., 2017, 17(18), 6069-6076.
[86]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M. An electrochemical sensor for clozapine at ruthenium doped TiO 2 nanoparticles modified electrode. Sens. Act. B. Chem., 2017, 247, 858-867.
[87]
Cincotto, F.H.; Golinelli, D.L.; Machado, S.A.; Moraes, F.C. Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sens. Act. B. Chem., 2017, 239, 488-493.
[88]
Knihnicki, P.; Wieczorek, M.; Moos, A.; Kościelniak, P.; Wietecha-Posłuszny, R.; Woźniakiewicz, M. Electrochemical sensor for determination of desipramine in biological material. Sens. Act. B. Chem., 2013, 189, 37-42.
[89]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst, 2013, 138(5), 1395-1404.
[90]
Huang, L.; Bu, L.; Zhao, F.; Zeng, B. Voltammetric behavior of ethopropazine and the influence of sodium dodecylsulfate on its accumulation on gold electrodes. J. Solid State Electrochem., 2004, 8(12), 976-981.
[91]
Şentürk, Z.; Özkan, S.A.; Uslu, B.; Biryol, I. Anodic voltammetry of fluphenazine at different solid electrodes. J. Pharm. Biomed. Anal., 1996, 15(3), 365-370.
[92]
Huang, F.; Qu, S.; Zhang, S.; Liu, B.; Kong, J. determination of fluphenazine at a dodecanethiol self-assembled monolayer-modified gold electrode, and its electrocatalysis to phenylephrine. Mikrochim. Acta, 2007, 159(1-2), 157-163.
[93]
Zeng, B.; Huang, F. Electrochemical behavior and determination of fluphenazine at multi-walled carbon nanotubes/(3-mercaptopropyl) trimethoxysilane bilayer modified gold electrodes. Talanta, 2004, 64(2), 380-386.
[94]
Alizadeh, T.; Azizi, S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens. Bioelectron., 2016, 81, 198-206.
[95]
Da Silva, A.R.; Lima, J.C.; Teles, M.O.; Brett, A.O. Electrochemical studies and square wave adsorptive stripping voltammetry of the antidepressant fluoxetine. Talanta, 1999, 49(3), 611-617.
[96]
Roque, D.S.A.; Lima, J.C.; Oliva, T.M.; Oliveira, B.A. Electrochemical studies and square wave adsorptive stripping voltammetry of the antidepressant fluoxetine. Talanta, 1999, 49(3), 611-617.
[97]
Nouws, H.P.; Delerue‐Matos, C.; Barros, A.A.; Rodrigues, J.A.; Santos‐Silva, A.; Borges, F. Square‐wave adsorptive‐stripping voltammetric detection in the quality control of fluoxetine. Anal. Lett., 2007, 40(6), 1131-1146.
[98]
Dogan, B.; Özkan, S.A.; Uslu, B. Electrochemical characterization of flupenthixol and rapid determination of the drug in human serum and pharmaceuticals by voltammetry. Anal. Lett., 2005, 38(4), 641-656.
[99]
Madrakian, T.; Soleimani, M.; Afkhami, A. Electrochemical determination of fluvoxamine on mercury nanoparticle multi-walled carbon nanotube modified glassy carbon electrode. Sens. Act. B. Chem., 2015, 210, 259-266.
[100]
El-Desoky, H.S.; Ghoneim, M.M. Assay of the anti-psychotic drug haloperidol in bulk form, pharmaceutical formulation and biological fluids using square-wave adsorptive stripping voltammetry at a mercury electrode. J. Pharm. Biomed. Anal., 2005, 38(3), 543-550.
[101]
Ribeiro, F.W.P.; Soaresb, J.E.S.; Beckera, H.; Souzaa, D.D.; Lima-Netoa, P.D.; Correiaa, A.N. Electrochemical Mechanism and Kinetics Studies of Haloperidol and its Abaghessay in Commercial Formulations. Electrochim. Acta, 2011, 56(5), 2036-2044.
[102]
Ribeiro, F.W.; Mendonça, G.L.; Soares, J.E.; Freire, V.N.; De Souza, D.; Casciano, P.N.; Correia, A.N. Exploiting the reduction of haloperidol: electrochemical and computational studies using silver amalgam and HMDE electrodes. Electrochim. Acta, 2014, 137, 564-574.
[103]
Bagheri, H.; Afkhami, A.; Panahi, Y.; Khoshsafar, H.; Shirzadmehr, A. Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples. Mater. Sci. Eng. C, 2014, 37, 264-270.
[104]
Vire, J.C.; Fischer, M.; Patriarche, G.J.; Christian, G.D. Electrochemical behaviour of some neuroleptics: Haloperidol and its derivatives. Talanta, 1981, 28(5), 313-317.
[105]
Tuzhi, P.; Zhongping, Y.; Rongshan, L. Voltammetric measurement of haloperidol following adsorptive accumulation at glassy-carbon electrodes. Talanta, 1991, 38(7), 741-745.
[106]
Huang, F.; Peng, Y.; Jin, G.; Zhang, S.; Kong, J. Sensitive detection of haloperidol and hydroxyzine at multi-walled carbon nanotubes-modified glassy carbon electrodes. Sensors, 2008, 8(3), 1879-1889.
[107]
Ferancova, A.; Korgova, E.; Miko, R.; Labuda, J. Determination of tricyclic antidepresants using a carbon paste electrode modified with B-Cyclodextrin. J. Electroanal. Chem., 2000, 492, 74-77.
[108]
dos Santos Neto, A.G.; de Sousa, C.S.; da Silva Freires, A.; Silva, S.M.; Zanin, H.; Damos, F.S.; Luz, R.D.C.S. Electrochemical sensor for detection of imipramine antidepressant at low potential based on oxidized carbon nanotubes, ferrocenecarboxylic acid, and cyclodextrin: application in psychotropic drugs and urine samples. J. Solid State Electrochem., 2017, 1-10.
[109]
Xu, X.; Zhou, G.; Li, H.; Liu, Q.; Zhang, S.; Kong, J. A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles. Talanta, 2009, 78, 26-32.
[110]
Jankowska-Śliwińska, J.; Dawgul, M.; Pijanowska, D.G. DNA-based electrochemical biosensor for imipramine detection. Procedia Eng., 2015, 120, 574-577.
[111]
Norouzi, P.; Ganjali, M.R.; Akbari-Adergani, B. Sub-second FFT continuous tripping cyclic voltammetric technique as a novel method for pico-level monitoring of imipramine at Au microelectrode in flowing solutions. Acta Chim. Slov., 2006, 53, 499-505.
[112]
Eslami, E.; Farjami, F.; Aberoomand, A.P.; Saber, T.M. Adsorptive stripping voltammetric determination of imipramine and amitriptiline at a nanoclay composite carbon ionic liquid electrode. Electroanal., 2014, 26, 424-431.
[113]
de Toledo, R.A.; Santos, M.C.; Shim, H.; Mazo, L.H. Electroanalytical determination of imipramine in reconstituted serum with a graphite-polyurethane composite electrode. Int. J. Electrochem. Sci., 2015, 10, 6975-6985.
[114]
Oliveira, S.N.; Ribeiro, F.W.; Sousa, C.P.; Soares, J.E.S.; Suffredini, H.B.; Becker, H.; Correia, A.N. Imipramine sensing in pharmaceutical formulations using boron-doped diamond electrode. J. Electroanal. Chem., 2017, 788, 118-124.
[115]
Shishehbore, M.R.; Vafai-Shahi, S.; Shefaie, F.; Meshayekhee, H.A. Differential pulse voltammetry technique for the determination of imipramine, dopamine and norepinephrine using a hydroquinone derivative multi-wall carbon nano-tube carbon paste electrode. Orient. J. Chem., 2017, 33(2), 1017-1020.
[116]
Cinkova, K.; Matokarova, M.; Salusova, I.; Plankova, A.; Brtkova, B.; Borovska, K.; Svorc, L. Voltammetric determination of antidepressant imipramine in pharmaceutical preparations using boron-doped diamond electrode. Chem. Listy, 2017, 111(6), 392-397.
[117]
Mohammadi-Behzad, L.; Gholivand, M.B.; Shamsipur, M.; Gholivand, K.; Barati, A.; Gholami, A. Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine. Mater. Sci. Eng. C, 2016, 60, 67-77.
[118]
Arvand, M.; Palizkar, B. Development of a modified electrode with amine-functionalized TiO 2/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine. Mater. Sci. Eng. C, 2013, 33(8), 4876-4883.
[119]
Arvand, M.; Orangpour, S.; Ghodsi, N. Differential pulse stripping voltammetric determination of the antipsychotic medication olanzapine at a magnetic nano-composite with a core/shell structure. RSC Advances, 2015, 5(57), 46095-46103.
[120]
EL-SHAL. M.A. Electrochemical studies for the determination of quetiapine fumarate and olanzapine antipsychotic drugs. Adv. Pharm. Bull., 2013, 3(2), 339-344.
[121]
Ahmed, H.M.; Mohamed, M.A.; Salem, W.M. New voltammetric analysis of olanzapine in tablets and human urine samples using a modified carbon paste sensor electrode incorporating gold nanoparticles and glutamine in a micellar medium. Anal. Methods, 2015, 7, 581.
[122]
Merli, D.; Dondi, D.; Pesavento, M.; Profumo, A. Electrochemistry of olanzapine and risperidone at carbon nanotubes modified gold electrode through classical and DFT approaches. J. Electroanal. Chem., 2012, 683, 103-111.
[123]
Shahrokhian, S.; Azimzadeh, M.; Hosseini, P. Modification of a glassy carbon electrode with a bilayer of multiwalled carbon nanotube/benzene disulfonate-doped polypyrrole: application to sensitive voltammetric determination of olanzapine. RSC Advances, 2014, 4(76), 40553-40560.
[124]
Heli, H.; Sattarahmady, N.; Zarea, S.N. Electrooxidation and determination of perphenazine on a graphene oxide nanosheet modified electrode. RSC Advances, 2015, 5, 21005-21011.
[125]
Ozkan, S.A.; Ozkan, Y.; Senturk, Z. Electrooxidation of pimozide and its differential pulse voltammetric and HPLC-EC determination. Anal. Chim. Acta, 2002, 453(2), 221-229.
[126]
Arabali, V.; Ebrahimi, M.; Karimi-Maleh, H. Highly sensitive determination of promazine in pharmaceutical and biological samples using a ZnO nanoparticle-modified ionic liquid carbon paste electrode. Chin. Chem. Lett., 2016, 27(5), 779-782.
[127]
Rezaei, B.; Ensafi, A.A.; Jamshidi-mofrad, E. A sensitive electrochemical sensor for hydroxylamine determination: Using multiwall carbon nanotube paste electrode (MWCNTPE) and promazine hydrochloride as homogenous mediator. Sens. Act. B. Chem., 2015, 211, 138-145.
[128]
Alizadeh, T.; Akhoundian, M. Promethazine determination in plasma samples by using carbon paste electrode modified with molecularly imprinted polymer (MIP): Coupling of extraction, preconcentration and electrochemical determination. Electrochim. Acta, 2010, 55(20), 5867-5873.
[129]
Chen, Y.; Liu, H.; Liu, Y.; Yang, Z. Sensitive electrochemical determination of promethazine hydrochloride based on the poly (p-aminobenzene sulfonic acid)/flowerlike ZnO crystals composite film. Anal. Methods, 2014, 6(4), 1203-1209.
[130]
Honarmand, E.; Motaghedifard, M.H.; Hadi, M.; Mostaanzadeh, H. Electro-oxidation study of promethazine hydrochloride at the surface of modified gold electrode using molecular self assembly of a novel bis-thio Schiff base from ethanol media. J. Mol. Liq., 2016, 216, 429-439.
[131]
Nigović, B.; Spajić, J. A novel electrochemical sensor for assaying of antipsychotic drug quetiapine. Talanta, 2011, 86, 393-399.
[132]
Nigović, B.; Mornar, A.; Sertić, M. Graphene nanocomposite modified glassy carbon electrode for voltammetric determination of the antipsychotic quetiapine. Mikrochim. Acta, 2016, 183(4), 1459-1467.
[133]
Ozkan, S.A.; Dogan, B.; Uslu, B. Voltammetric analysis of the novel atypical antipsychotic drug quetiapine in human serum and urine. Mikrochim. Acta, 2006, 153(1), 27-35.
[134]
Taşdemir, I.H.; Çakirer, O.; Erk, N.; Kiliç, E. Square-wave cathodic adsorptive stripping voltammetry of risperidone. Collect. Czech. Chem. Commun., 2011, 76(3), 159-176.
[135]
Molaakbari, E.; Mostafavi, A.; Tohidiyan, Z.; Beitollahi, H. Synthesis and application of conductive polymeric ionic liquid/Ni nanocomposite to construct a nanostructure based electrochemical sensor for determination of risperidone and methylphenidate. J. Electroanal. Chem., 2017, 801, 198-205.
[136]
Meng, Z.; Zheng, J.; Zhu, X. Investigation on electrochemical behavior of risperidone and its applicationActa. Chim. Sinica.- Chinese Edition; , 2005, 63, . (9) 827
[137]
Arvand, M.; Pourhabib, A. Adsorptive Stripping Differential Pulse Voltammetric Determination of Risperidone with a Multi‐Walled Carbon Nanotube‐Ionic Liquid Paste Modified Glassy Carbon Electrode. J. Chin. Chem. Soc., 2013, 60(1), 63-72.
[138]
Cheng, H.; Liang, J.; Zhang, Q.; Tu, Y. The electrochemical behavior and oxidation mechanism of sertraline on a rutin modified electrode. J. Electroanal. Chem., 2012, 674, 7-11.
[139]
Dermiş, S.; Cay, H.Y. Electrochemical behaviour of sertraline hydrochloride at a glassy carbon electrode and its determination in pharmaceutical products using osteryoung square wave voltammetry. Die Pharmazie-An Int. J. Pharm. Sci., 2010, 65(3), 182-187.
[140]
Nouws, H.P.; Delerue-Matos, C.; Barros, A.A.; Rodrigues, J.A. Electroanalytical study of the antidepressant sertraline. J. Pharm. Biomed. Anal., 2005, 39(1), 290-293.
[141]
Vela, M.H.; Garcia, M.Q.; Montenegro, M.C.B.S.M. Electrochemical behaviour of sertraline at a hanging mercury drop electrode and its determination in pharmaceutical products. Fresenius J. Anal. Chem., 2001, 369(7-8), 563-566.
[142]
García, M.; Ortuño, J.A.; Albero, M.; Abuherba, M.S. Development of membrane selective electrode for determination of the antipsychotic sulpiride in pharmaceuticals and urine. Sensors, 2009, 9(6), 4309-4322.
[143]
Shahrokhian, S.; Ghalkhani, M.; Adeli, M.; Amini, K.M. Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine. Biosens. Bioelectron., 2009, 24(11), 3235-3241.
[144]
Shahrokhian, S.; Nassaba, N.H. Nanodiamond decorated with silver nanoparticles as a sensitive film modifier in a jeweled electrochemical sensor: application to voltammetric determination of thioridazine. Electroanal., 2013, 25(2), 417-425.
[145]
Azar, P.A.; Farjami, F.; Tehrani, M.S.; Eslami, E.J. A carbon nanocomposite ionic liquid electrode based on montmorillonite nanoclay for sensitive voltammetric determination of thioridazine. Int. J. Electrochem. Sci., 2014, 9, 2535-2547.
[146]
Feng, X.; Wang, C.; Cui, R.; Yang, X.; Hou, W.J. The synthesis of nitrogen-doped carbon nanotubes/gold composites and their application to the detection of thioridazine. J. Solid State Electrochem., 2012, 16, 2691-2698.
[147]
Mashhadizadeh, M.H.; Afshar, E. Electrochemical studies and selective detection of thioridazine using a carbon paste electrode modified with ZnS nanoparticles and simultaneous determination of thioridazine and olanzapine. Electroanal., 2012, 24(11), 2193-2202.
[148]
Biryol, I.; Dermiş, S. Voltammetric determination of thioridazine hydrochloride. Turk. J. Chem., 1998, 22, 325-333.
[149]
Amiri, M.; Sohrabnezhad, S.; Rahimi, A. Nickel (II) incorporated AlPO-5 modified carbon paste electrode for determination of thioridazine in human serum. Mater. Sci. Eng. C, 2014, 37, 342-347.
[150]
Tehrani, Z.M.; Farahani, Z.; Mohajer, A.; Mofidi, J. Determination of selenium in thioridazine hydrochloride by differential pulse anodic stripping voltammetry. Asian J. Chem., 2010, 22(6), 4611.
[151]
Jin, G.; Huang, F.; Li, W.; Yu, S.; Zhang, S.; Kong, J. Sensitive detection of trifluoperazine using a poly-ABSA/SWNTs film-modified glassy carbon electrode. Talanta, 2008, 74(4), 815-820.
[152]
Dogan-Topal, B. Electrooxidative behavior and determination of trifluoperazine at multiwalled carbon nanotube-modified glassy carbon electrode solid state. J. Solid State Electrochem., 2013, 17, 1059-1066.
[153]
Fei, H.; Quan-Ping, Y.; Bai-Zhao, Z.T. Electrochemical behavior and determination of trifluoperazine at decanethiol self. assembled monolayer modified gold electrodes. Wuhan Univ. J. Nat. Sci., 2005, 10(2), 435-440.
[154]
Atta, N.F.; Ahmed, Y.M. BinSabt, M. H.; Galal, A. Hematite nanoparticles/ionic liquid crystal/graphene-based nanocomposite electrochemical sensor for sensitive determination of antipsychotic drug. J. Electrochem. Soc., 2016, 163(14), B659-B666.
[155]
Stanković, D.; Dimitrijević, T.; Kuzmanović, D.; Krstić, M.P.; Petković, B.B. Voltammetric determination of an antipsychotic agent trifluoperazine at a boron-doped diamond electrode in human urine. RSC Advances, 2015, 5(129), 107058-107063.
[156]
Kul, D.; Gumustas, M.; Uslu, B.; Ozkan, S.A. Electroanalytical characteristics of antipsychotic drug ziprasidone and its determination in pharmaceuticals and serum samples on solid electrodes. Talanta, 2010, 82(1), 286-295.
[157]
Şentürk, Z.; Özkan, S.A.; Özkan, Y.; Aboul-Enein, H.Y. Voltammetric investigation of oxidation of zuclopenthixol and application to its determination in dosage forms and in drug dissolution studies. J. Pharm. Biomed. Anal., 2000, 22(2), 315-323.

© 2025 Bentham Science Publishers | Privacy Policy