Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Prediction of the Omp16 Epitopes for the Development of an Epitope-based Vaccine Against Brucellosis

Author(s): Marzieh Rezaei, Mohammad Rabbani-khorasgani*, Sayyed Hamid Zarkesh-Esfahani, Rahman Emamzadeh and Hamid Abtahi

Volume 19, Issue 1, 2019

Page: [36 - 45] Pages: 10

DOI: 10.2174/1871526518666180709121653

Price: $65

Abstract

Background: Brucellosis is an infectious disease caused by Brucella bacteria that cause disease in animals and humans. Brucellosis is one of the most common zoonotic diseases transmitted from animals-to-human through direct contact with infected animals and also consumption of unpasteurized dairy products. Due to the wide incidence of brucellosis in Iran and economical costs in industrial animal husbandry, Vaccination is the best way to prevent this disease. All of the available commercial vaccines against brucellosis are derived from live attenuated strains of Brucella but because of the disadvantage of live attenuated vaccines, protective subunit vaccine against Brucella may be a good candidate for the production of new recombinant vaccines based on Brucella Outer Membrane Protein (OMP) antigens. In the present study, comprehensive bioinformatics analysis has been conducted on prediction software to predict T and B cell epitopes, the secondary and tertiary structures and antigenicity of Omp16 antigen and the validation of used software confirmed by experimental results.

Conclusion: The final epitope prediction results have proposed that the three epitopes were predicted for the Omp16 protein with antigenicity ability. We hypothesized that these epitopes likely have the protective capacity to stimulate both the B-cell and T-cell mediated immune responses and so may be effective as an immunogenic candidate for the development of an epitope-based vaccine against brucellosis.

Keywords: Brucella, brucellosis, epitope-based vaccine, outer membrane protein, (Omp16), B-cell, T-cell.

Graphical Abstract

[1]
Cassataro, J.; Estein, S.M.; Pasquevich, K.A.; Velikovsky, C.A.; de la Barrera, S.; Bowden, R.; Fossati, C.A.; Giambartolomei, G.H. Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect. Immun., 2005, 73(12), 8079-8088.
[2]
Paquet, J.Y.; Diaz, M.A.; Genevrois, S.; Grayon, M.; Verger, J.M.; de Bolle, X.; Lakey, J.H.; Letesson, J.J.; Cloeckaert, A. Molecular, antigenic, and functional analyses of Omp2b porin size variants of Brucella spp. J. Bacteriol., 2001, 183(16), 4839-4847.
[3]
Seleem, M.N.; Boyle, S.M.; Sriranganathan, N. Brucellosis: a re-emerging zoonosis. Vet. Microbiol., 2010, 140(3-4), 392-398.
[4]
Young, E.J. Human brucellosis. Rev. Infect. Dis., 1983, 5(5), 821-842.
[5]
Godfroid, J.; Nielsen, K.; Saegerman, C. Diagnosis of brucellosis in livestock and wildlife. Croat. Med. J., 2010, 51(4), 296-305.
[6]
Kakoma, I.; Baek, B.K.; Boyle, S.M.; Srianganathan, N.; Olsen, S.; Young, E. Comments on efforts to eradicate brucellosis. J. Am. Vet. Med. Assoc., 2007, 230(1), 27.
[7]
Boschiroli, M.L.; Foulongne, V.; O’Callaghan, D. Brucellosis: a worldwide zoonosis. Curr. Opin. Microbiol., 2001, 4(1), 58-64.
[8]
Cheville, N.F.; Stevens, M.G.; Jensen, A.E.; Tatum, F.M.; Halling, S.M. Immune responses and protection against infection and abortion in cattle experimentally vaccinated with mutant strains of Brucella abortus. Am. J. Vet. Res., 1993, 54(10), 1591-1597.
[9]
Vishnu, U.S.; Sankarasubramanian, J.; Gunasekaran, P.; Rajendhran, J. Novel Vaccine Candidates against Brucella melitensis Identified through Reverse Vaccinology Approach. OMICS, 2015, 19(11), 722-729.
[10]
Cloeckaert, A.; Vizcaíno, N.; Paquet, J.Y.; Bowden, R.A.; Elzer, P.H. Major outer membrane proteins of Brucella spp.: past, present and future. Vet. Microbiol., 2002, 90(1-4), 229-247.
[11]
Azad, A.K.; Hasan, Md. M.; Hossain, Md. S.; Rahman, M.R.; Chowdhury, P.A. In silico analysis of outer membrane protein 31 of Brucella spp. To identify and characterize the potential T cell epitope. Int. J. Pharm. Med. & Bio. Sc., 2013, 2(3), 2013.
[12]
Tibor, A.; Decelle, B.; Letesson, J.J. Outer membrane proteins Omp10, Omp16, and Omp19 of Brucella spp. are lipoproteins. Infect. Immun., 1999, 67(9), 4960-4962.
[13]
Cloeckaert, A.; de Wergifosse, P.; Dubray, G.; Limet, J.N. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay. Infect. Immun., 1990, 58(12), 3980-3987.
[14]
Mahdavi, J.; Pirinccioglu, N.; Oldfield, N.J.; Carlsohn, E.; Stoof, J.; Aslam, A.; Self, T.; Cawthraw, S.A.; Petrovska, L.; Colborne, N.; Sihlbom, C.; Borén, T.; Wooldridge, K.G. Ala’Aldeen, D.A. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol., 2014, 4, 130202.
[15]
Pasquevich, K.A.; García Samartino, C.; Coria, L.M.; Estein, S.M.; Zwerdling, A.; Ibañez, A.E.; Barrionuevo, P.; Oliveira, F.S.; Carvalho, N.B.; Borkowski, J.; Oliveira, S.C.; Warzecha, H.; Giambartolomei, G.H.; Cassataro, J. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis. J. Immunol., 2010, 184(9), 5200-5212.
[16]
Golshani, M.; Zandi, P.; Bouzari, S. In silico Design of Truncated Omp31 Protein of Brucella melitensis:Its Cloning and High Level Expression in Escherichia coli. Vac. Res. Vaccine Research, 2014, 1(1), 436-445.
[17]
Doytchinova, I.A.; Flower, D.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8, 4.
[18]
Singh, H.; Raghava, G.P. ProPred: prediction of HLA-DR binding sites. Bioinformatics, 2001, 17(12), 1236-1237.
[19]
Singh, H.; Raghava, G.P. ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics, 2003, 19(8), 1009-1014.
[20]
Soria-Guerra, R.E.; Nieto-Gomez, R.; Govea-Alonso, D.O.; Rosales-Mendoza, S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J. Biomed. Inform., 2015, 53, 405-414.
[21]
Toes, R.E.; Nussbaum, A.K.; Degermann, S.; Schirle, M.; Emmerich, N.P.; Kraft, M.; Laplace, C.; Zwinderman, A.; Dick, T.P.; Müller, J.; Schönfisch, B.; Schmid, C.; Fehling, H.J.; Stevanovic, S.; Rammensee, H.G.; Schild, H. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med., 2001, 194(1), 1-12.
[22]
Geourjon, C.; Deléage, G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci., 1995, 11(6), 681-684.
[23]
Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol., 1985, 55(3), 836-839.
[24]
Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol., 2001, 305(3), 567-580.
[25]
Wang, W.; Wu, J.; Qiao, J.; Weng, Y.; Zhang, H.; Liao, Q.; Qiu, J.; Chen, C.; Allain, J.P.; Li, C. Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep. Vaccine, 2014, 32(7), 825-833.
[26]
Tabatabai, L.B.; Pugh, G.W., Jr Modulation of immune responses in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine, 1994, 12(10), 919-924.
[27]
Vizcaíno, N.; Zygmunt, M.S.; Verger, J.M.; Grayon, M.; Cloeckaert, A. Localization and characterization of a specific linear epitope of the Brucella DnaK protein. FEMS Microbiol. Lett., 1997, 154(1), 117-122.
[28]
Remmert, M.; Linke, D.; Lupas, A.N.; Söding, J. HHomp--prediction and classification of outer membrane proteins. Nucleic Acids Res, 2009, 37(Web Server issue), W446-451.
[29]
Gomez, G.; Pei, J.; Mwangi, W.; Adams, L.G.; Rice-Ficht, A.; Ficht, T.A. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine. Reverse vaccinology and Brucella melitensis candidates identified via a reverse vaccinology approach. PLoS One, 2013, 8(3), e59751.
[30]
Bot, A.; Obrocea, M.; Marincola, F. Cancer Vaccines: From Research to Clinical Practice. CRC press Taylor & Francis Group: New York, 2011.
[31]
Whitacre, D.C.; Lee, B.O.; Milich, D.R. Use of hepadnavirus core proteins as vaccine platforms. Expert Rev. Vaccines, 2009, 8(11), 1565-1573.
[32]
Purcell, A.W.; McCluskey, J.; Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov., 2007, 6(5), 404-414.
[33]
Testa, J.S.; Philip, R. Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications. Future Virol., 2012, 7(11), 1077-1088.
[34]
Roider, J.; Meissner, T.; Kraut, F.; Vollbrecht, T.; Stirner, R.; Bogner, J.R.; Draenert, R. Comparison of experimental fine-mapping to in silico prediction results of HIV-1 epitopes reveals ongoing need for mapping experiments. Immunology, 2014, 143(2), 193-201.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy