Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Simultaneous HPTLC Densitometric Estimation of KBA and AKBA from Boswellia serrata

Author(s): Meenu Mehta, Munish Garg, Kamal Dua and Saurabh Satija*

Volume 15, Issue 1, 2019

Page: [84 - 91] Pages: 8

DOI: 10.2174/1573411014666180704123521

Price: $65

Abstract

Background: Boswellic acids (BAs) are extracted from oleo gum of Boswellia serrata and are utilized as potential anti-inflammatory, hypolipidemic, immunomodulatory and antitumor specialists. The present examination was meant to assess KBA and AKBA in Boswellia serrata separate by High-Performance Thin Layer Chromatography (HPTLC).

Methods: The separation of bioactive compounds was performed utilizing mobile phase glacial acetic acid, n-hexane, ethyl acetate and toluene (0.3: 1: 8: 2) (v/v/v/v) and distinguished at wavelength 254 nm. The technique was approved for linearity, precision, accuracy, limit of detection (LOD), limit of quantification (LOQ), and so forth by International Conference on Harmonization guidelines.

Results: The calibration range was observed to be 2- 14 μg/band for both the bioactive compounds. KBA was isolated with an Rf estimation of 0.39 ± 0.02 and AKBA with an Rf estimation of 0.42 ± 0.02. The accuracy was seen to be as high as 99.17% and 97.42 for KBA and KBA, respectively. The percentage RSD value for intra-day and between day varieties was under 2%. The system indicated high affectability and specificity.

Conclusion: The developed HPTLC method was simple, precise, robust, specific, rapid, and costeffective and could be used for quality control analysis and quantification of KBA and AKBA in different herbal formulations containing the plant species.

Keywords: Boswellia serrata, boswellic acids, HPTLC, method development, quality control, validation.

« Previous
Graphical Abstract

[1]
Maupetit, P. New constituents in olibanum resinoid and essential oils. Perf. Flav., 1984, 9, 19-37.
[2]
Leung, A.Y.; Foster, S. Encyclopaedia of natural ingredients used in food, drugs and cosmetics; New York, 1996.
[3]
Lemenih, M.; Teketay, D. Frankincense and myrrh resources of Ethiopia: II. Medicinal and industrial uses. Ethiop. J. Health Sci., 2003, 26, 161-172.
[4]
Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants, 2nd ed; Delhi, India, 1935.
[5]
Shao, Y.; Ho, C.T.; Chin, C.K.; Badmaev, V.; Ma, W.; Huang, M.T. Inhibitory activity of boswellic acids from Boswellia serrata against human leukaemia HL-60 cells in culture. Planta Med., 1998, 64, 328-331.
[6]
Liu, J.J.; Huang, B.; Hooi, S.C. Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br. J. Pharmacol., 2006, 148, 1099-1107.
[7]
Huang, M.T.; Badmaev, V.; Ding, Y.; Liu, Y.; Xie, J.G.; Ho, C.T. Anti-tumour and anti-carcinogenic activities of triterpenoids, beta-boswellic acid. Biofactors, 2000, 13, 25-230.
[8]
Gupta, I.; Gupta, V.; Parihar, A.; Gupta, S.; Ludtke, R.; Safayhi, H.; Ammon, H.P. Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a double-blind, placebo-controlled, week clinical study. Eur. J. Med. Res., 1998, 3, 511-514.
[9]
Ammon, H.P. Boswellic acids in chronic inflammatory diseases. Planta Med., 2006, 2, 1100-1116.
[10]
Kimmatkar, N.; Thawani, V.; Hingorani, L.; Khiyani, R. Efficacy and tolerability of Boswellia serrta extract in treatment of osteoarthritis of knee-A randomized double blind placebo controlled trial. Phytomedicine, 2003, 10, 3-7.
[11]
Gupta, I.; Parihar, A.; Malhotra, P.; Gupta, S.; Ludtke, R.; Safayhi, H.; Ammon, H.P. Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med., 2001, 67, 391-395.
[12]
Gerhardt, H.; Seifert, F.; Buvari, P.; Vogelsang, H.; Repges, R. Therapy of active Crohn disease with Boswellia serrata extracts H-15. Z. Gastroenterol., 2001, 39, 11-17.
[13]
Ammon, H.P. Boswellic acids in chronic inflammatory diseases. Planta Med., 2006, 72, 1100-1116.
[14]
Singh, G.B.; Singh, S.; Bani, S. Anti-inflammatory actions of boswellic acids. Phytomedicine, 1996, 3(1), 81-85.
[15]
Ammon, H.P.T.; Mack, T.; Singh, G.B.; Safayhi, H. Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of gum resin exudates of Boswellia serrata. Planta Med., 1991, 57, 203-207.
[16]
Ammon, H.P.; Safayhi, H.; Mack, T.; Sabieraj, J. Mechanism of anti-inflammatory actions of curcumine and boswellic acids. J. Ethnopharmacol., 1993, 38, 113-119.
[17]
Siemoneit, U.; Pergola, C.; Jazzar, B.; Northoff, H.; Skarke, C.; Jauch, J. On the interference of boswellic acids with 5-lipoxygenase: Mechanistic studies in vitro and pharmacological relevance. Eur. J. Pharmacol., 2009, 606, 246-254.
[18]
Safayhi, H.; Sailer, E.R.; Ammon, H.P. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-boswellic acid. Mol. Pharmacol., 1995, 47, 1212-1216.
[19]
Abdel-Tawab, M.; Werz, O.; Schubert-Zsilavecz, M. Boswellia serrata: an overall assessment of in vitro, preclinical, pharmacokinetic and clinical data. Clin. Pharmacokinet., 2011, 50, 349-369.
[20]
Skarke, C.; Kuczka, K.; Tausch, L. Increased bioavailability of 11-keto-β-boswellic acid following single oral dose frankincense extract administration after a standardized meal in healthy male volunteers: Modeling and simulation considerations for evaluating drug exposures. J. Clin. Pharmacol., 2012, 52(10), 1592-1600.
[21]
Tausch, L.; Henkel, A.; Siemoneit, U. Identification of human cathepsin G as a functional target of boswellic acids from the anti-inflammatory remedy frankincense. J. Immunol., 2009, 183, 3433.
[22]
Dash, S.; Das, C.; Sahoo, D.C. Phytochemical and anthelmintic screening of crude bark extract of Adenanthera pavonina Linn. Int. J. Pharm. Compd., 2010, 2, 1-4.
[23]
Patil, A.G.; Koli, S.P.; Patil, D.A.; Chandra, N. Phamacognostical standardization and HPTLC finger print of Crataeva tapia Linn. SSP. Odora [Jacob.] Almeida leaves. Int. J. Pharm. Biosci., 2010, 1(2), 1-14.
[24]
Ramya, V.; Dheena, D.V.; Umamaheswari, S. In vitro studies on antibacterial activity and separation of active compounds of selected flower extracts by HPTLC. J. Chem. Pharm. Res., 2010, 2(6), 86-91.
[25]
Gomathi, D.; Ravikumar, G.; Kalaiselvi, M.; Vidya, B.; Uma, C. HPTLC Fingerprinting Analysis of Evolvulus Alsinoides (L.). J. Acute Med., 2012, 2, 77-82.
[26]
Rathee, D.; Thanki, M.; Agarwal, R.; Anandjiwala, S. Simultaneous Quantification of Bergenin, (+)-Catechin, Gallicin and Gallic acid; and quantification of β-sitosterol using HPTLC from Bergenia ciliata (Haw.) Sternb. Forma. Ligulata. Yeo (Pasanbheda). Pharm. Anal. Acta, 2010, 1, 104.
[27]
Chen, S.; Liu, H.; Tian, R.; Yang, D.; Xu, H.; Chan, A.; Xie, P. High performance thin-layer chromatographic fingerprints of isoflavonoids for distinguishing between Radix puerariae Lobate and Radix puerariae Thomsonii. J. Chromatogr. A, 2006, 1121, 114-119.
[28]
Krohn, K.; Rao, M.S.; Raman, N.V.; Khalilullah, M. High-performance Thin Layer Chromatographic analysis of Anti-Inflammatory triterpenoids from Boswellia serrata Roxb. Phytochem. Anal., 2001, 12, 374-376.
[29]
Pawar, R.K.; Sharma, S.; Singh, K.C.; Sharma, R.K. Physio-chemical standardisation and development of HPTLC method for the determination of β-boswellic acid from Boswellia serrata roxb (exudates). Int. J. App. Pharm. Sci., 2011, 3, 8-13.
[30]
Shah, S.A.; Rathod, S.I.; Suhagia, B.N.; Patel, D.A.; Parmar, V.K.; Shah, B.K.; Vaishnavi, V.M. Estimation of boswellic acids from market formulations of Boswellia serrata extract and 11-keto ß- boswellic acid in human plasma by high-performance thin-layer chromatography. J. Chromatogr. B , 2007, 232, 848.
[31]
ICH, Validation of analytical procedures: Text and Methodology (Q2AR1),. 2005.
[32]
Xie, P.; Chen, S.; Liang, Y.; Wang, X.; Tian, R.; Upton, R. Chromatographic fingerprint analysis--a rational approach for quality assessment of traditional Chinese herbal medicine. J. Chromatogr. A, 2006, 1112, 171-180.
[33]
Qiao, C.; Han, Q.; Song, J.; Mo, S.; Kong, L.; Kung, H.; Xu, H. Chemical fingerprint and quantitative analysis of Fructus Psoraleae by high-performance liquid chromatography. J. Sep. Sci., 2007, 30, 813-818.
[34]
Lu, H.; Liang, Y.; Chen, S. HPTLC densitometric quantification of stigmasterol and lupeol from Ficus religiosa. J. Ethnopharmacol., 2006, 105, 436-440.
[35]
Li, K.; Wang, S. Fingerprint chromatogram analysis of extracts from the leaves of Tripterygium wilfordii Hook. F. by high performance liquid chromatography. J. Sep. Sci., 2005, 28, 653-657.
[36]
Anandjiwala, S.; Srinivasa, H.; Rajani, M. Isolation and TLC densitometric quantification of gallicin, gallic acid, lupeol and β-sitosterol from Bergia suffruticosa, a hitherto unexplored plant. Chromatographia, 2007, 66, 725-734.
[37]
Qian, G.; Wang, Q.; Leung, K.; Qin, Y.; Zhao, Z.; Jiang, Z. Quality assessment of Rhizoma et Radix Notopterygii by HPTLC and HPLC fingerprinting and HPLC quantitative analysis. J. Pharm. Biomed. Anal., 2007, 44, 812-817.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy