[1]
Armitage O, Oyen L. Hard-Soft Tissue Interface Engineering. Adv Exp Med Biol 2015; 881: 187-204.
[2]
Fergal J. O’Brien. Biomaterials & scaffolds for tissue engineering. Materials Today Volume 2011; 14(30): 88-95.
[3]
Murdock MH, Badylak SF. Biomaterials-based in situ tissue engineering. Curr Opin Biomed Eng 2017; 1: 4-7.
[4]
Hench LL, Wilson J. An introduction to bioceramics. World Scientific 1993.
[5]
Baino F, Verné E, Vitale-Brovarone C. 3-D high-strength glass–ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Mater Sci Eng C 2009; 29(6): 2055-62.
[6]
Baino F, Ferraris M, Bretcanu O, et al. Optimization of composition, structure and mechanical strength of bioactive 3-D glassceramic scaffolds for bone substitution. J Biomater Appl 2013; 27(7): 872-90.
[7]
Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 2011; 31(7): 1245-56.
[8]
Hockin HK. Xu, Michael D.Weir, Elena F.Burguera, Alexis M. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials 2006; 27(24): 4279-87.
[9]
Heini PF, Wälchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: Operative technique and early results. Eur Spine J 2000; 9(5): 445-50.
[10]
Friedman CD, Costantino PD, Takagi S, Chow LC. BoneSource™ hydroxyapatite cement: A novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 1998; 43(4): 428-32.
[11]
Tomita S, Molloy S, Jasper LE, Abe M, Belkoff SM. Biomechanical comparison of kyphoplasty with different bone cements. Spine 2004; 29(11): 1203-7.
[12]
Keller TS, Kosmopoulos V, Lieberman IH. Vertebroplasty and kyphoplasty affect vertebral motion segment stiffness and stress distributions: A microstructural finite element study. Spine 2005; 30(11): 1258-65.
[13]
Kasperk C, Hillmeier J, Nöldge G, et al. Treatment of painful vertebral fractures by kyphoplasty in patients with primary osteoporosis: a prospective nonrandomized controlled study. J Bone Miner Res 2005; 20(4): 604-12.
[14]
Alves HL, Dos Santos LA, Bergmann CP. Injectability evaluation of tricalcium phosphate bone cement. J Mater Sci Mater Med 2008; 19(5): 2241-6.
[15]
Wang X, Ye J, Wang H. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J Biomed Mater Res B Appl Biomater 2006; 78(2): 259-64.
[16]
Wang X, Chen L, Xiang H, Ye J. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B Appl Biomater 2007; 81(2): 410-8.
[17]
Jiang L, Li Y, Xiong C. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci 2009; 16(1): 65.
[18]
Couto DS, Hong Z, Mano JF. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater 2009; 5(1): 115-23.
[19]
Baroud G, Cayer E, Bohner M. Rheological characterization of concentrated aqueous β-tricalcium phosphate suspensions: The effect of liquid-to-powder ratio, milling time, and additives. Acta Biomater 2005; 1(3): 357-63.
[20]
Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials 2005; 26(13): 1553-63.
[21]
Bonfield W. Hydroxyapatite‐reinforced polyethylene as an analogous material for bone replacementa. Ann N Y Acad Sci 1988; 523: 173-7.
[22]
Yamamuro T, Hench L, Wilson J. Handbook of bioactive ceramics. CRC-Press 1990.
[23]
Sohrabi M, Hesaraki S, Kazemzadeh A, Alizadeh M. Development of injectable biocomposites from hyaluronic acid and bioactive glass nano-particles obtained from different sol-gel routes. Mater Sci Eng C 2013; 33(7): 3730-44.
[24]
Roseti L, Parisi V, Petretta M, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C 2017; 78: 1246-62.
[25]
Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: A review. Int J Biol Macromol 2015; 72: 269-81.
[26]
Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 2014; 10(4): 1646-62.
[27]
El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater 2017; 62: 1-28.
[28]
Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue engineering. Acta Biomater 2011; 7(6): 2355-73.
[29]
Ahmadi SM, Behnamghader A, Asefnejaad A. Sol-gel synthesis, characterization and in vitro evaluation of SiO2−CaO−P2O5 bioactive glass nanoparticles with various CaO/P2O5 ratios. Dig J Nanomater Biostruct 2017; 12(3): 847-60.
[30]
Borhan S, Hesaraki S, Behnamghader AA, Ghasemi E. Rheological evaluations and in vitro studies of injectable bioactive glass-polycaprolactone-sodium alginate composites. J Mater Sci Mater Med 2016; 27(9): 137.
[31]
Kokubo T, Takadama H. How Useful is SBF in Predicting in vivo Bone Bioactivity? Biomaterials 2006; 27(15): 2907-15.
[32]
New N, Furuike T, Tamura H. The mechanical and biological propertiesof chitosan scaffolds for tissue regeneration templates are significantlyenhanced by chitosan from Gongronella butleri. Materials (Basel) 2009; 2(2): 374-98.
[33]
O’Neilla R, McCarthy HO. Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomater 2017; 50: 1-19.
[34]
Sanchez C, Julián B, Belleville P, Popall M. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 2005; 15: 3559-92.
[35]
Gabbai-Armelin PR, Alves Cardoso D, et al. Injectable composites based on biosilicate® and alginate: handling and in vitro characterization. RSC Advances 2014; 4: 45778-85.
[36]
Bramhill J, Ross S, Ross G. Bioactive nanocomposites for tissue repair and regeneration: A Review. Int J Environ Res Public Health 2017; 14(1): 66.
[37]
Sohrabi M, Hesaraki S, Kazemzadeh A. The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses: Hyaluronic acid versus sodium alginate. J Biomed Mater Res B Appl Biomater 2014; 102(3): 561-73.
[38]
Liu C, Shao H, Chen F, Zheng H. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials 2006; 27(29): 5003-13.
[39]
Srinivasan S, Jayasree R, Chennazhi KP, Nair SV, Jayakumar R. Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 2012; 87(1): 274-83.
[40]
Chen QZ, Thouas GA. Fabrication and characterization of sol–gel derived 45S5 Bioglass–ceramic Scaffolds. Acta Biomater 2011; 7(10): 3616-26.
[41]
Kazy SK, Sar P, Singh SP, Sen AK, D’Souza SF. Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World J Microbiol Biotechnol 2002; 18(6): 583-8.
[42]
Cui X, Zhang Y, Wang H, et al. An injectable borate bioactive glass cement for bone repair:Preparation, bioactivity and setting mechanism. J Non Cryst Solids 2016; 432(A): 150-157.
[43]
Lu HH, Tang A, Oh SC, Spalazzi JP, Dionisio K. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Biomaterials 2005; 26(32): 6323-34.
[44]
Phan PV, Grzanna M, Chu J, Polotsky A, et al. The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro. J Biomed Mater Res A 2003; 67(3): 1001-8.
[45]
Kim EJ, Bu SY, Sung MK, Choi MK. Effects of silicon on osteoblast activity and bone mineralization of MC3T3-E1 cells. Biol Trace Elem Res 2013; 152(1): 105-12.
[46]
Shamsi M, Karimi M, Ghollasi M, et al. In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO2-31CaO-5P2O5)-poly-l-lactic acid nanofibers fabricated by electrospinning method. Mater Sci Eng C 2017; 78: 114-23.
[47]
Wang S, Gao X, Gong W, Zhang Z, Chen X, Dong Y. Odontogenic differentiation and dentin formation of dental pulp cells under nanobioactive glass induction. Acta Biomater 2005; 10: 2792-803.