[1]
Bousquet, P.; Feldman, J.; Schwartz, J. Central cardiovascular effects of alpha adrenergic drugs: Differences between catecholamines and imidazolines. J. Pharmacol. Exp. Ther., 1984, 230(1), 232-236.
[2]
Head, G.A.; Mayorov, D.N. Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc. Hematol. Agents Med. Chem., 2006, 4(1), 17-32.
[3]
Laurent, S. Antihypertensive drugs. Pharmacol. Res., 2017, 124, 116-125.
[4]
Bektas, N.; Nemutlu, D.; Arslan, R. The imidazoline receptors and ligands in pain modulation. Indian J. Pharmacol., 2015, 47(5), 472-478.
[5]
Dardonville, C.; Rozas, I. Imidazoline binding sites and their ligands: An overview of the different chemical structures. Med. Res. Rev., 2004, 24(5), 639-661.
[6]
Li, J.X. Imidazoline I2 receptors: An update. Pharmacol. Ther., 2017, 178, 48-56.
[7]
Mukaddam-Daher, S. An “I” on cardiac hypertrophic remodelling: imidazoline receptors and heart disease. Can. J. Cardiol., 2012, 28(5), 590-598.
[8]
Nikolic, K.; Agbaba, D. Imidazoline antihypertensive drugs: Selective I1-imidazoline receptors activation. Cardiovasc. Ther., 2012, 30(4), 209-216.
[9]
Sarac, B.; Korkmaz, O.; Altun, A.; Bagcivan, I.; Goksel, S.; Yildirim, S.; Berkan, O. Investigation of the vasorelaxant effects of moxonidine and its relaxation mechanism on the human radial artery when used as a coronary bypass graft. Interact. Cardiovasc. Thorac. Surg., 2015, 21(3), 342-345.
[10]
Mar, G.Y.; Chou, M.T.; Chung, H.H.; Chiu, N.H.; Chen, M.F.; Cheng, J.T. Changes of imidazoline receptors in spontaneously hypertensive rats. Int. J. Exp. Pathol., 2013, 94(1), 17-24.
[11]
Aceros, H.; Farah, G.; Cobos-Puc, L.; Stabile, A.M.; Noiseux, N.; Mukaddam-Daher, S. Moxonidine improves cardiac structure and performance in SHR through inhibition of cytokines, p38 MAPK and Akt. Br. J. Pharmacol., 2011, 164(3), 946-957.
[12]
Aceros, H.; Farah, G.; Noiseux, N.; Mukaddam-Daher, S. Moxonidine modulates cytokine signalling and effects on cardiac cell viability. Eur. J. Pharmacol., 2014, 740, 168-182.
[13]
Maltsev, A.V.; Kokoz, Y.M.; Evdokimovskii, E.V.; Pimenov, O.Y.; Reyes, S.; Alekseev, A.E. Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling. J. Mol. Cell. Cardiol., 2014, 68, 66-74.
[14]
Maltsev, A.V.; Nenov, M.N.; Pimenov, O.Y.; Kokoz, Y.M. Modulation of L-type Ca2+ currents and intracellular calcium by agmatine in rat cardiomyocytes. Biol. Membrany,, 2013, 30(2), 92-104.
[15]
Laube, G.; Bernstein, H.G. Agmatine: Multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem. J., 2017, 474(15), 2619-2640.
[16]
Neis, V.B.; Rosa, P.B.; Olescowicz, G.; Rodrigues, A.L.S. Therapeutic potential of agmatine for CNS disorders. Neurochem. Int., 2017, 108, 318-331.
[17]
Molderings, G.J.; Haenisch, B. Agmatine (decarboxylated L-arginine): Physiological role and therapeutic potential. Pharmacol. Ther., 2012, 133(3), 351-365.
[18]
Wehrwein, E.A.; Orer, H.S.; Barman, S.M. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr. Physiol., 2016, 6(3), 1239-1278.
[19]
Sorota, S. The sympathetic nervous system as a target for the treatment of hypertension and cardiometabolic diseases. J. Cardiovasc. Pharmacol., 2014, 6(5), 466-476.
[20]
Dampney, R.A. Central neural control of the cardiovascular system: Current perspectives. Adv. Physiol. Educ., 2016, 40(3), 283-296.
[21]
Lim, K.; van den Buuse, M.; Head, G.A. Effect of endothelin-1 on baroreflexes and the cardiovascular action of clonidine in conscious rabbits. Front. Physiol., 2016, 7, 321.
[22]
Nik Yusoff, N.S.; Mustapha, Z.; Govindasamy, C.; Sirajudeen, K.N. Effect of clonidine (an antihypertensive drug) treatment on oxidative stress markers in the heart of spontaneously hypertensive rats. Oxid. Med. Cell. Longev., 2013, 2013, 927214.
[23]
Lee, H.M.; Ruggoo, V.; Graudins, A. Intrathecal clonidine pump failure causing acute withdrawal syndrome with ‘stress-induced’ cardiomyopathy. J. Med. Toxicol., 2016, 12(1), 134-138.
[24]
Lowry, J.A.; Brown, J.T. Significance of the imidazoline receptors in toxicology. Clin. Toxicol. (Phila.), 2014, 52(5), 454-469.
[25]
Edwards, L.P.; Brown-Bryan, T.A.; McLean, L.; Ernsberger, P. Pharmacological properties of the central antihypertensive agent, moxonidine. Cardiovasc. Ther., 2012, 30(4), 199-208.
[26]
Karlafti, E.F.; Hatzitolios, A.I.; Karlaftis, A.F.; Baltatzi, M.S.; Koliakos, G.G.; Savopoulos, C.G. Effects of moxonidine on sympathetic nervous system activity: An update on metabolism, cardio, and other target-organ protection. J. Pharm. Bioallied Sci., 2013, 5(4), 253-256.
[27]
Deftereos, S.; Giannopoulos, G.; Kossyvakis, C.; Efremidis, M.; Panagopoulou, V.; Raisakis, K.; Kaoukis, A.; Karageorgiou, S.; Bouras, G.; Katsivas, A.; Pyrgakis, V.; Stefanadis, C. Effectiveness of moxonidine to reduce atrial fibrillation burden in hypertensive patients. Am. J. Cardiol., 2013, 112(5), 684-687.
[28]
Reid, J.L. Update on rilmenidine: clinical benefits. Am. J. Hypertens., 2001, 14(11 Pt 2), 322S-324S.
[29]
Benitez, J.; Garcia, D.; Romero, N.; Gonzalez, A.; Martinez, J.; Figueroa, M.; Salas, M.; Lopez, V.; Dodd, P.R.; Schenk, G.; Carvajal, N.; Uribe, E. Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metabolism, 2018, 81, 35-44.
[30]
Shopsin, B. The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: A pilot study. Acta Neuropsychiatr., 2013, 25(2), 113-118.
[31]
Uzbay, T.; Goktalay, G.; Kayir, H.; Eker, S.S.; Sarandol, A.; Oral, S.; Buyukuysal, L.; Ulusoy, G.; Kirli, S. Increased plasma agmatine levels in patients with schizophrenia. J. Psychiatr. Res., 2013, 47(8), 1054-1060.
[32]
Esnafoglu, E.; Irende, I. Decreased plasma agmatine levels in autistic subjects. J. Neural Transm. (Vienna), 2018, 125(4), 735-740.
[33]
Gilad, G.M.; Gilad, V.H. Long-term (5 years), high daily dosage of dietary agmatine-evidence of safety: A case report. J. Med. Food, 2014, 17(11), 1256-1259.
[34]
Isbister, G.K.; Heppell, S.P.; Page, C.B.; Ryan, N.M. Adult clonidine overdose: Prolonged bradycardia and central nervous system depression, but not severe toxicity. Clin. Toxicol. (Phila.), 2017, 55(3), 187-192.
[35]
Lindesay, G.; Ragonnet, C.; Chimenti, S.; Villeneuve, N.; Vayssettes-Courchay, C. Age and hypertension strongly induce
aortic stiffening in rats at basal and matched blood pressure. levels.
Physiol. Rep, 2016, 4, 10, e12805.
[36]
Buttgereit, J.; Shanks, J.; Li, D.; Hao, G.; Athwal, A.; Langenickel, T.H.; Wright, H.; da Costa Goncalves, A.C.; Monti, J.; Plehm, R.; Popova, E.; Qadri, F.; Lapidus, I.; Ryan, B.; Ozcelik, C.; Paterson, D.J.; Bader, M.; Herring, N. C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function. Cardiovasc. Res., 2016, 112(3), 637-644.
[37]
Mohammed, M.; Kulasekara, K.; Ootsuka, Y.; Blessing, W.W. Locus coeruleus noradrenergic innervation of the amygdala facilitates alerting-induced constriction of the rat tail artery. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2016, 310(11), R1109-R1119.
[38]
Hanafusa, N.; Okamoto, K.; Takatori, S.; Kawasaki, H. Involvement of hypothalamic periventricular GABAergic nerves in the central pressor response to clonidine in freely-moving conscious rats. J. Pharmacol. Sci., 2012, 118(3), 382-390.
[39]
Parkin, M.L.; Lim, K.; Burke, S.L.; Head, G.A. Comparison in conscious rabbits of the baroreceptor-heart rate reflex effects of chronic treatment with rilmenidine, moxonidine, and clonidine. Front. Physiol., 2016, 7, 522.
[40]
Monroy-Ordonez, E.B.; Villalon, C.M.; Cobos-Puc, L.E.; Marquez-Conde, J.A.; Sanchez-Lopez, A.; Centurion, D. Evidence that some imidazoline derivatives inhibit peripherally the vasopressor sympathetic outflow in pithed rats. Auton. Neurosci., 2008, 143(1-2), 40-45.
[41]
Situmorang, J.H.; Lin, H.H.; Lo, H.; Lai, C.C. Role of neuronal nitric oxide synthase (nNOS) at medulla in tachycardia induced by repeated administration of ethanol in conscious rats. J. Biomed. Sci., 2018, 25(1), 8.
[42]
Peng, J.; Wang, Y.K.; Wang, L.G.; Yuan, W.J.; Su, D.F.; Ni, X.; Deng, X.M.; Wang, W.Z. Sympathoinhibitory mechanism of moxonidine: Role of the inducible nitric oxide synthase in the rostral ventrolateral medulla. Cardiovasc. Res., 2009, 84(2), 283-291.
[43]
Shinohara, K.; Hirooka, Y.; Kishi, T.; Sunagawa, K. Reduction of nitric oxide-mediated γ-amino butyric acid release in rostral ventrolateral medulla is involved in superoxide-induced sympathoexcitation of hypertensive rats. Circ. J., 2012, 76(12), 2814-2821.
[44]
Peng, J.F.; Wu, Z.T.; Wang, Y.K.; Yuan, W.J.; Sun, T.; Ni, X.; Su, D.F.; Wang, W.; Xu, M.J.; Wang, W.Z. GABAergic mechanism in the rostral ventrolateral medulla contributes to the hypotension of moxonidine. Cardiovasc. Res., 2011, 89(2), 473-481.
[45]
Alves, T.B.; Totola, L.T.; Takakura, A.C.; Colombari, E.; Moreira, T.S. GABA mechanisms of the nucleus of the solitary tract regulates the cardiovascular and sympathetic effects of moxonidine. Auton. Neurosci., 2016, 194, 1-7.
[46]
Totola, L.T.; Alves, T.B.; Takakura, A.C.; Ferreira-Neto, H.C.; Antunes, V.R.; Menani, J.V.; Colombari, E.; Moreira, T.S. Commissural nucleus of the solitary tract regulates the antihypertensive effects elicited by moxonidine. Neuroscience, 2013, 250, 80-91.
[47]
Cobos-Puc, L.E.; Aguayo-Morales, H.; Silva-Belmares, Y.; Gonzalez-Zavala, M.A.; Centurion, D. alpha2A-adrenoceptors, but not nitric oxide, mediate the peripheral cardiac sympatho-inhibition of moxonidine. Eur. J. Pharmacol., 2016, 782, 35-43.
[48]
Sear, J.W. Chapter 23 Antihypertensive drugs and vasodilators A2 - Hemmings, Hugh C.In: Pharmacology and Physiology for Anesthesia; Egan, T.D., Ed.; W.B. Saunders: Philadelphia, 2013, pp. 405-425.
[49]
Kim, Y.H.; Nam, T.S.; Ahn, D.S.; Chung, S. Modulation of N-type Ca(2)(+) currents by moxonidine via imidazoline I(1) receptor activation in rat superior cervical ganglion neurons. Biochem. Biophys. Res. Commun., 2011, 409(4), 645-650.
[50]
Martin, S.W.; Butcher, A.J.; Berrow, N.S.; Richards, M.W.; Paddon, R.E.; Turner, D.J.; Dolphin, A.C.; Sihra, T.S.; Fitzgerald, E.M. Phosphorylation sites on calcium channel alpha1 and beta subunits regulate ERK-dependent modulation of neuronal N-type calcium channels. Cell Calcium, 2006, 39(3), 275-292.
[51]
Cobos-Puc, L.E.; Sanchez-Lopez, A.; Centurion, D. Pharmacological analysis of the cardiac sympatho-inhibitory actions of moxonidine and agmatine in pithed spontaneously hypertensive rats. Eur. J. Pharmacol., 2016, 791, 25-36.
[52]
Gulati, A. Down-regulation of alpha 2 adrenoceptors in ventrolateral medulla of spontaneously hypertensive rats. Life Sci., 1991, 48(12), 1199-1206.
[53]
Zhang, J.; Abdel-Rahman, A.A. Inhibition of nischarin expression attenuates rilmenidine-evoked hypotension and phosphorylated extracellular signal-regulated kinase 1/2 production in the rostral ventrolateral medulla of rats. J. Pharmacol. Exp. Ther., 2008, 324(1), 72-78.
[54]
Maziveyi, M.; Dong, S.; Baranwal, S.; Alahari, S.K. Nischarin regulates focal adhesion and Invadopodia formation in breast cancer cells. Mol. Cancer, 2018, 17(1), 21.
[55]
Dong, S.; Baranwal, S.; Garcia, A.; Serrano-Gomez, S.J.; Eastlack, S.; Iwakuma, T.; Mercante, D.; Mauvais-Jarvis, F.; Alahari, S.K. Nischarin inhibition alters energy metabolism by activating AMP-activated protein kinase. J. Biol. Chem., 2017, 292(41), 16833-16846.
[56]
Jain, P.; Baranwal, S.; Dong, S.; Struckhoff, A.P.; Worthylake, R.A.; Alahari, S.K. Integrin-binding protein nischarin interacts with tumor suppressor liver kinase B1 (LKB1) to regulate cell migration of breast epithelial cells. J. Biol. Chem., 2013, 288(22), 15495-15509.
[57]
Marei, H.; Malliri, A. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases, 2017, 8(3), 139-163.
[58]
Wang, Y.; Wang, S.; Lei, M.; Boyett, M.; Tsui, H.; Liu, W.; Wang, X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: From mechanistic study to therapeutic exploration. Br. J. Pharmacol., 2018, 175(8), 1362-1374.
[59]
Salt, I.P.; Hardie, D.G. AMP-activated protein kinase: An ubiquitous signaling pathway with key roles in the cardiovascular system. Circ. Res., 2017, 120(11), 1825-1841.
[60]
Zhang, W.; Wang, Q.; Wu, Y.; Moriasi, C.; Liu, Z.; Dai, X.; Wang, Q.; Liu, W.; Yuan, Z.Y.; Zou, M.H. Endothelial cell-specific liver kinase B1 deletion causes endothelial dysfunction and hypertension in mice in vivo. Circulation, 2014, 129(13), 1428-1439.
[61]
Guo, C.A.; Guo, S. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J. Endocrinol., 2017, 233(3), R131-R143.
[62]
Jackson, K.L.; Palma-Rigo, K.; Nguyen-Huu, T.P.; Davern, P.J.; Head, G.A. Actions of rilmenidine on neurogenic hypertension in BPH/2J genetically hypertensive mice. J. Hypertens., 2014, 32(3), 575-586.
[63]
Burke, S.L.; Evans, R.G.; Head, G.A. Effects of chronic sympatho-inhibition on renal excretory function in renovascular hypertension. J. Hypertens., 2011, 29(5), 945-952.
[64]
Yang, J.; Wang, W.Z.; Shen, F.M.; Su, D.F. Cardiovascular effects of agmatine within the rostral ventrolateral medulla are similar to those of clonidine in anesthetized rats. Exp. Brain Res., 2005, 160(4), 467-472.
[65]
Raasch, W.; Schafer, U.; Qadri, F.; Dominiak, P. Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction. Br. J. Pharmacol., 2002, 135(3), 663-672.
[66]
Zhao, D.; Ren, L.M. Non-adrenergic inhibition at prejunctional sites by agmatine of purinergic vasoconstriction in rabbit saphenous artery. Neuropharmacology, 2005, 48(4), 597-606.
[67]
Santos, W.C.; Smaili, S.S.; Jurkiewicz, A.; Picarro, I.; Garcez-do-Carmo, L. Dual effect of agmatine in the bisected rat vas deferens. J. Pharm. Pharmacol., 2003, 55(3), 373-380.
[68]
Torok, J.; Zemancikova, A. Agmatine modulation of noradrenergic neurotransmission in isolated rat blood vessels. Chin. J. Physiol., 2016, 59(3), 131-138.
[69]
Kim, Y.H.; Jeong, J.H.; Ahn, D.S.; Chung, S. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation. Biochem. Biophys. Res. Commun., 2016, 477(3), 406-412.
[70]
Kim, Y.H.; Jeong, J.H.; Ahn, D.S.; Chung, S. Phospholipase C-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate underlies agmatine-induced suppression of N-type Ca2+ channel in rat celiac ganglion neurons. Biochem. Biophys. Res. Commun., 2017, 484(2), 342-347.
[71]
Cobos-Puc, L.; Aguayo-Morales, H.; Ventura-Sobrevilla, J.; Luque-Contreras, D.; Chin-Chan, M. Further analysis of the inhibition by agmatine on the cardiac sympathetic outflow: Role of the alpha(2)-adrenoceptor subtypes. Eur. J. Pharmacol., 2017, 805, 75-83.
[72]
Sugiura, T.; Kobuchi, S.; Tsutsui, H.; Takaoka, M.; Fujii, T.; Hayashi, K.; Matsumura, Y. Preventive mechanisms of agmatine against ischemic acute kidney injury in rats. Eur. J. Pharmacol., 2009, 603(1-3), 108-113.
[73]
Tagashira, H.; Matsumoto, T.; Taguchi, K.; Zhang, C.; Han, F.; Ishida, K.; Nemoto, S.; Kobayashi, T.; Fukunaga, K. Vascular endothelial sigma1-receptor stimulation with SA4503 rescues aortic relaxation via Akt/eNOS signaling in ovariectomized rats with aortic banding. Circ. J., 2013, 77(11), 2831-2840.
[74]
Taguchi, K.; Matsumoto, T.; Kamata, K.; Kobayashi, T. Suppressed G-protein-coupled receptor kinase 2 activity protects female diabetic-mouse aorta against endothelial dysfunction. Acta Physiol. (Oxf.), 2013, 207(1), 142-155.
[75]
Enouri, S.; Monteith, G.; Johnson, R. Functional characteristics of alpha adrenergic and endothelinergic receptors in pressurized rat mesenteric veins. Can. J. Physiol. Pharmacol., 2013, 91(7), 538-546.
[76]
Broadley, K.J.; Fehler, M.; Ford, W.R.; Kidd, E.J. Functional evaluation of the receptors mediating vasoconstriction of rat aorta by trace amines and amphetamines. Eur. J. Pharmacol., 2013, 715(1-3), 370-380.
[77]
Chlopicki, S.; Kozlovski, V.I.; Gryglewski, R.J. Clonidine-induced coronary vasodilatation in isolated guinea pig heart is not mediated by endothelial alpha(2) adrenoceptors. J. Physiol. Pharmacol., 2003, 54(4), 511-521.
[78]
Vidal, C.; Grassin-Delyle, S.; Devillier, P.; Naline, E.; Lansac, E.; Menasche, P.; Faisy, C. Effect of severe acidosis on vasoactive effects of epinephrine and norepinephrine in human distal mammary artery. J. Thorac. Cardiovasc. Surg., 2014, 147(5), 1698-1705.
[79]
de Souza Rossignoli, P.; Yamamoto, F.Z.; Pereira, O.C.; Chies, A.B. Norepinephrine responses in rat renal and femoral veins are reinforced by vasoconstrictor prostanoids. Vascul. Pharmacol., 2015, 72, 93-100.
[80]
Tugrul, I.; Dost, T.; Demir, O.; Gokalp, F.; Oz, O.; Girit, N.; Birincioglu, M. Effects of a PPAR-gamma receptor agonist and an angiotensin receptor antagonist on aortic contractile responses to alpha receptor agonists in diabetic and/or hypertensive rats. Cardiovasc. J. Afr., 2016, 27(3), 164-169.
[81]
Moreira, T.S.; Takakura, A.C.; Menani, J.V.; Colombari, E. Involvement of central alpha1- and alpha2-adrenoceptors on cardiovascular responses to moxonidine. Eur. J. Pharmacol., 2007, 563(1-3), 164-171.
[82]
Zhao, D.; Ren, L.M.; Lu, H.G.; Zhang, X. Potentiation by yohimbine of alpha-adrenoceptor-mediated vasoconstriction in response to clonidine in the rabbit ear vein. Eur. J. Pharmacol., 2008, 589(1-3), 201-205.
[83]
Mukaddam-Daher, S.; Menaouar, A.; Gutkowska, J. Receptors involved in moxonidine-stimulated atrial natriuretic peptide release from isolated normotensive rat hearts. Eur. J. Pharmacol., 2006, 541(1-2), 73-79.
[84]
Kawada, T.; Shimizu, S.; Yamamoto, H.; Miyamoto, T.; Shishido, T.; Sugimachi, M. Peripheral versus central effect of intravenous moxonidine on rat carotid sinus baroreflex-mediated sympathetic arterial pressure regulation. Life Sci., 2017, 190, 103-109.
[85]
Artigues-Varin, C.; Richard, V.; Varin, R.; Mulder, P.; Thuillez, C. Alpha2-adrenoceptor ligands inhibit alpha1-adrenoceptor-mediated contraction of isolated rat arteries. Fundam. Clin. Pharmacol., 2002, 16(4), 281-287.
[86]
Marsault, R.; Taddei, S.; Boulanger, C.M.; Illiano, S.; Vanhoutte, P.M. Rilmenidine activates postjunctional alpha 1- and alpha 2-adrenoceptors in the canine saphenous vein. Fundam. Clin. Pharmacol., 1996, 10(4), 379-386.
[87]
Gadkari, T.V.; Cortes, N.; Madrasi, K.; Tsoukias, N.M.; Joshi, M.S. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide, 2013, 35, 65-71.
[88]
Musgrave, I.F.; Van Der Zypp, A.; Grigg, M.; Barrow, C.J. Endogenous imidazoline receptor ligands relax rat aorta by an endothelium-dependent mechanism. Ann. N. Y. Acad. Sci., 2003, 1009, 222-227.
[89]
Nader, M.A.; Gamiel, N.M.; El-Kashef, H.; Zaghloul, M.S. Effect of agmatine on experimental vascular endothelial dysfunction. Hum. Exp. Toxicol., 2016, 35(5), 573-582.
[90]
El-Awady, M.S.; Suddek, G.M. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits. J. Pharm. Pharmacol., 2014, 66(6), 835-843.
[91]
Lee, L.M.; Lin, C.H.; Chung, H.H.; Cheng, J.T.; Chen, I.H.; Tong, Y.C. Agmatine induces rat prostate relaxation through activation of peripheral imidazoline I2-Receptors. Low. Urin. Tract Symptoms, 2013, 5(1), 39-43.
[92]
Lee, L.M.; Tsai, T.C.; Chung, H.H.; Tong, Y.C.; Cheng, J.T. Prostatic relaxation induced by agmatine is decreased in spontaneously hypertensive rats. BJU Int., 2012, 110(6B), E253-E258.
[93]
Tsai, T.C.; Lin, C.H.; Chung, H.H.; Cheng, J.T.; Chen, I.H.; Tong, Y.C. Urinary bladder relaxation through activation of imidazoline receptors induced by agmatine is increased in diabetic rats. Low. Urin. Tract Symptoms, 2014, 6(2), 117-123.
[94]
El-Awady, M.S.; Nader, M.A.; Sharawy, M.H. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model. Environ. Toxicol. Pharmacol., 2017, 55, 74-80.
[95]
Zefirov, T.L.; Ziyatdinova, N.I.; Khisamieva, L.I.; Zefirov, A.L. Effect of alpha2-adrenoceptor stimulation on cardiac activity in rats. Bull. Exp. Biol. Med., 2014, 157(2), 194-197.
[96]
Knaus, A.; Zong, X.; Beetz, N.; Jahns, R.; Lohse, M.J.; Biel, M.; Hein, L. Direct inhibition of cardiac hyperpolarization-activated cyclic nucleotide-gated pacemaker channels by clonidine. Circulation, 2007, 115(7), 872-880.
[97]
Radwanska, A.; Dlugokecka, J.; Wasilewski, R.; Kaliszan, R. Testing conception of engagement of imidazoline receptors in imidazoline drugs effects on isolated rat heart atria. J. Physiol. Pharmacol., 2009, 60(1), 131-142.
[98]
Stabile, A.M.; Aceros, H.; Stockmeyer, K.; Abdel Rahman, A.A.; Noiseux, N.; Mukaddam-Daher, S. Functional and molecular effects of imidazoline receptor activation in heart failure. Life Sci., 2011, 88(11-12), 493-503.
[99]
Yarmohmmadi, F.; Rahimi, N.; Faghir-Ghanesefat, H.; Javadian, N.; Abdollahi, A.; Pasalar, P.; Jazayeri, F.; Ejtemaeemehr, S.; Dehpour, A.R. Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat. Eur. J. Pharmacol., 2017, 796, 39-44.
[100]
El-Sayed, S.S.; Zakaria, M.N.; Abdel-Ghany, R.H.; Abdel-Rahman, A.A. Cystathionine-gamma lyase-derived hydrogen sulfide mediates the cardiovascular protective effects of moxonidine in diabetic rats. Eur. J. Pharmacol., 2016, 783, 73-84.
[101]
Li, T.; Jiang, S.; Yang, Z.; Ma, Z.; Yi, W.; Wang, D.; Yang, Y. Targeting the energy guardian AMPK: Another avenue for treating cardiomyopathy? Cell. Mol. Life Sci., 2017, 74(8), 1413-1429.
[102]
Lambert, E.A.; Sari, C.I.; Eikelis, N.; Phillips, S.E.; Grima, M.; Straznicky, N.E.; Dixon, J.B.; Esler, M.; Schlaich, M.P.; Head, G.A.; Lambert, G.W. Effects of moxonidine and low-calorie diet: cardiometabolic benefits from combination of both therapies. Obesity (Silver Spring), 2017, 25(11), 1894-1902.
[103]
Schrover, I.M.; Dorresteijn, J.A.N.; Smits, J.E.; Danser, A.H.J.; Visseren, F.L.J.; Spiering, W. Identifying treatment response to antihypertensives in patients with obesity-related hypertension. Clin. Hypertens., 2017, 23, 20.
[104]
Nascimento, A.R.; Machado, M.V.; Gomes, F.; Vieira, A.B.; Goncalves-de-Albuquerque, C.F.; Lessa, M.A.; Bousquet, P.; Tibirica, E. Central sympathetic modulation reverses microvascular alterations in a rat model of high-fat diet-induced metabolic syndrome. Microcirculation, 2016, 23(4), 320-329.
[105]
Wang, Y.K.; Yu, Q.; Tan, X.; Wu, Z.T.; Zhang, R.W.; Yang, Y.H.; Yuan, W.J.; Hu, Q.K.; Wang, W.Z. Centrally acting drug moxonidine decreases reactive oxygen species via inactivation of the phosphoinositide-3 kinase signaling in the rostral ventrolateral medulla in hypertensive rats. J. Hypertens., 2016, 34(5), 993-1004.
[106]
Honda, N.; Hirooka, Y.; Ito, K.; Matsukawa, R.; Shinohara, K.; Kishi, T.; Yasukawa, K.; Utsumi, H.; Sunagawa, K. Moxonidine-induced central sympathoinhibition improves prognosis in rats with hypertensive heart failure. J. Hypertens., 2013, 31(11), 2300-2308 discussion 2308.
[107]
Saczewski, F.; Kornicka, A.; Rybczynska, A.; Hudson, A.L.; Miao, S.S.; Gdaniec, M.; Boblewski, K.; Lehmann, A. 1-[(Imidazolidin-2-yl)imino]indazole. Highly alpha 2/I1 selective agonist: Synthesis, X-ray structure, and biological activity. J. Med. Chem., 2008, 51(12), 3599-3608.
[108]
Kornicka, A.; Wasilewska, A.; Saczewski, J.; Hudson, A.L.; Boblewski, K.; Lehmann, A.; Gzella, K.; Belka, M.; Saczewski, F.; Gdaniec, M.; Rybczynska, A.; Baczek, T. 1-[(Imidazolidin-2-yl)imino]-1H-indoles as new hypotensive agents: synthesis and in vitro and in vivo biological studies. Chem. Biol. Drug Des., 2017, 89(3), 400-410.
[109]
Saczewski, F.; Kornicka, A.; Hudson, A.L.; Laird, S.; Scheinin, M.; Laurila, J.M.; Rybczynska, A.; Boblewski, K.; Lehmann, A.; Gdaniec, M. 3-[(Imidazolidin-2-yl)imino]indazole ligands with selectivity for the alpha(2)-adrenoceptor compared to the imidazoline I(1) receptor. Bioorg. Med. Chem., 2011, 19(1), 321-329.
[110]
Saczewski, J.; Hudson, A.; Scheinin, M.; Rybczynska, A.; Ma, D.; Saczewski, F.; Laird, S.; Laurila, J.M.; Boblewski, K.; Lehmann, A.; Gu, J.; Watts, H. Synthesis and biological activities of 2-[(heteroaryl)methyl]imidazolines. Bioorg. Med. Chem., 2012, 20(1), 108-116.
[111]
Boblewski, K.; Lehmann, A.; Saczewski, F.; Saczewski, J.; Kornicka, A.; Marchwinska, A.; Rybczynska, A. Circulatory effect of TCS-80, a new imidazoline compound, in rats. Pharmacol. Rep., 2016, 68(4), 715-719.
[112]
Schann, S.; Bruban, V.; Pompermayer, K.; Feldman, J.; Pfeiffer, B.; Renard, P.; Scalbert, E.; Bousquet, P.; Ehrhardt, J.D. Synthesis and biological evaluation of pyrrolinic isosteres of rilmenidine. Discovery of cis-/trans-dicyclopropylmethyl-(4,5-dimethyl-4,5-dihydro-3H-pyrrol-2-yl)-amine (LNP 509), an I1 imidazoline receptor selective ligand with hypotensive activity. J. Med. Chem., 2001, 44(10), 1588-1593.
[113]
Schann, S.; Greney, H.; Gasparik, V.; Dontenwill, M.; Rascente, C.; Lacroix, G.; Monassier, L.; Bruban, V.; Feldman, J.; Ehrhardt, J.D.; Bousquet, P. Methylation of imidazoline related compounds leads to loss of alpha(2)-adrenoceptor affinity. Synthesis and biological evaluation of selective I(1) imidazoline receptor ligands. Bioorg. Med. Chem., 2012, 20(15), 4710-4715.
[114]
Gasparik, V.; Greney, H.; Schann, S.; Feldman, J.; Fellmann, L.; Ehrhardt, J.D.; Bousquet, P. Synthesis and biological evaluation of 2-aryliminopyrrolidines as selective ligands for I1 imidazoline receptors: Discovery of new sympatho-inhibitory hypotensive agents with potential beneficial effects in metabolic syndrome. J. Med. Chem., 2015, 58(2), 878-887.
[115]
Ferreira, R.B.; de Oliveira, M.G.; Antunes, E.; Almeida, W.P.; Ibrahim, B.M.; Abdel-Rahman, A.A. New 2-Aminothiazoline derivatives lower blood pressure of spontaneously hypertensive rats (SHR) via I1-imidazoline and alpha-2 adrenergic receptors activation. Eur. J. Pharmacol., 2016, 791, 803-810.
[116]
Abas, S.; Erdozain, A.M.; Keller, B.; Rodriguez-Arevalo, S.; Callado, L.F.; Garcia-Sevilla, J.A.; Escolano, C. Neuroprotective effects of a structurally new family of high affinity imidazoline I2 receptor ligands. ACS Chem. Neurosci., 2017, 8(4), 737-742.