Review Article

天然膳食剂对多发性骨髓瘤预防和治疗的影响:分子研究和临床转化的潜力

卷 27, 期 2, 2020

页: [187 - 215] 页: 29

弟呕挨: 10.2174/0929867325666180629153141

价格: $65

摘要

化学预防是基于使用无毒、有药理活性的药物,来防止肿瘤恶化。在这方面,最近的文献认为天然膳食剂是控制恶性肿瘤发病和恶化的有前景的工具。迄今为止,人们进行了广泛的研究,以阐明天然产物对肿瘤生长和生存的影响,揭示了此类化合物所针对的最相关的信号转导途径。总之,流行病学或动物研究的结果甚至临床试验都支持膳食剂对肿瘤细胞抗炎,抗氧化和细胞毒性的作用。多发性骨髓瘤是一种血液系统恶性肿瘤,其特征是骨髓浆细胞异常增生,并伴有高钙血症、肾功能不全、贫血或骨病,尽管有新的治疗方法,但仍无法治愈。值得注意的是,越来越多的证据支持饮食天然化合物在该病的临床前模型中对抗多发性骨髓瘤生长的能力,并强调其作为候选抗癌药物的潜力。在这篇综述中,我们旨在总结膳食天然产物的抗肿瘤活性的研究结果,重点介绍其分子机制,包括抑制致癌信号转导途径和/或表观遗传调节作用,以及它们对抗多发性骨髓瘤及其相关骨病的潜在临床应用。

关键词: 癌症化学预防,天然抗癌治疗,多发性骨髓瘤,食疗剂,天然化合物。

[1]
Allart-Vorelli, P.; Porro, B.; Baguet, F.; Michel, A.; Cousson-Gélie, F. Haematological cancer and quality of life: a systematic literature review. Blood Cancer J., 2015, 5(4)e305
[http://dx.doi.org/10.1038/bcj.2015.29] [PMID: 25909835]
[2]
Bianchi, G.; Anderson, K.C. Understanding biology to tackle the disease: Multiple myeloma from bench to bedside, and back. CA Cancer J. Clin., 2014, 64(6), 422-444.
[http://dx.doi.org/10.3322/caac.21252] [PMID: 25266555]
[3]
Rajkumar, S.V.; Kyle, R.A.; Therneau, T.M.; Melton, L.J. III; Bradwell, A.R.; Clark, R.J.; Larson, D.R.; Plevak, M.F.; Dispenzieri, A.; Katzmann, J.A. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood, 2005, 106(3), 812-817.
[http://dx.doi.org/10.1182/blood-2005-03-1038] [PMID: 15855274]
[4]
Agnelli, L.; Tassone, P.; Neri, A. Molecular profiling of multiple myeloma: from gene expression analysis to next-generation sequencing. Expert Opin. Biol. Ther., 2013, 13(Suppl. 1), S55-S68.
[http://dx.doi.org/10.1517/14712598.2013.793305] [PMID: 23614397]
[5]
Richardson, P.G.; Laubach, J.P.; Munshi, N.C.; Anderson, K.C. Early or delayed transplantation for multiple myeloma in the era of novel therapy: does one size fit all? Hematology (Am. Soc. Hematol. Educ. Program), 2014, 2014(1), 255-261.
[http://dx.doi.org/10.1182/asheducation.V2014.1.255.3885263] [PMID: 25696864]
[6]
Tassone, P.; Neri, P.; Burger, R.; Di Martino, M.T.; Leone, E.; Amodio, N.; Caraglia, M.; Tagliaferri, P. Mouse models as a translational platform for the development of new therapeutic agents in multiple myeloma. Curr. Cancer Drug Targets, 2012, 12(7), 814-822.
[http://dx.doi.org/10.2174/156800912802429292] [PMID: 22671927]
[7]
Calimeri, T.; Battista, E.; Conforti, F.; Neri, P.; Di Martino, M.T.; Rossi, M.; Foresta, U.; Piro, E.; Ferrara, F.; Amorosi, A.; Bahlis, N.; Anderson, K.C.; Munshi, N.; Tagliaferri, P.; Causa, F.; Tassone, P. A unique three-dimensional SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human primary multiple myeloma cells. Leukemia, 2011, 25(4), 707-711.
[http://dx.doi.org/10.1038/leu.2010.300] [PMID: 21233838]
[8]
Raimondi, L.; De Luca, A.; Morelli, E.; Giavaresi, G.; Tagliaferri, P.; Tassone, P.; Amodio, N. MicroRNAs: Novel crossroads between myeloma cells and the bone marrow microenvironment. BioMed Res. Int., 2016, 20166504593
[http://dx.doi.org/10.1155/2016/6504593] [PMID: 26881223]
[9]
Anderson, K.C. Progress and paradigms in multiple myeloma. Clin. Cancer Res., 2016, 22(22), 5419-5427.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0625] [PMID: 28151709]
[10]
Hideshima, T.; Mitsiades, C.; Tonon, G.; Richardson, P.G.; Anderson, K.C. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat. Rev. Cancer, 2007, 7(8), 585-598.
[http://dx.doi.org/10.1038/nrc2189] [PMID: 17646864]
[11]
Vogelstein, B.; Fearon, E.R.; Hamilton, S.R.; Kern, S.E.; Preisinger, A.C.; Leppert, M.; Nakamura, Y.; White, R.; Smits, A.M.; Bos, J.L. Genetic alterations during colorectal-tumor development. N. Engl. J. Med., 1988, 319(9), 525-532.
[http://dx.doi.org/10.1056/NEJM198809013190901] [PMID: 2841597]
[12]
Barrett, J.C. Mechanisms of multistep carcinogenesis and carcinogen risk assessment. Environ. Health Perspect., 1993, 100, 9-20.
[http://dx.doi.org/10.1289/ehp.931009] [PMID: 8354184]
[13]
Amodio, N.; Morelli, E.; Barone, A.; Tassone, P. Challenges in multiple myeloma chemoprevention: potential role of natural, synthetic and endogenous molecules in: Molecular Targets and Strategies in Cancer Prevention; Chatterjee, M., Ed.; Springerlink, 2016, pp. 37-60.
[http://dx.doi.org/10.1007/978-3-319-31254-5_3]
[14]
Chhabra, G.; Singh, C.K.; Ndiaye, M.A.; Fedorowicz, S.; Molot, A.; Ahmad, N. Prostate cancer chemoprevention by natural agents: Clinical evidence and potential implications. Cancer Lett., 2018, 422, 9-18.
[http://dx.doi.org/10.1016/j.canlet.2018.02.025] [PMID: 29471004]
[15]
Sung, B.; Prasad, S.; Yadav, V.R.; Aggarwal, B.B. Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr. Cancer, 2012, 64(2), 173-197.
[http://dx.doi.org/10.1080/01635581.2012.630551] [PMID: 22149093]
[16]
Niu, Y.; Bai, J.; Kamm, R.D.; Wang, Y.; Wang, C. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment. Mol. Pharm., 2014, 11(7), 2022-2029.
[http://dx.doi.org/10.1021/mp500054h] [PMID: 24533867]
[17]
De Luca, A.; Raimondi, L.; Salamanna, F.; Carina, V.; Costa, V.; Bellavia, D.; Alessandro, R.; Fini, M.; Giavaresi, G. Relevance of 3d culture systems to study osteosarcoma environment. J. Exp. Clin. Cancer Res., 2018, 37(1), 2.
[http://dx.doi.org/10.1186/s13046-017-0663-5] [PMID: 29304852]
[18]
Wang, F.M.; Galson, D.L.; Roodman, G.D.; Ouyang, H. Resveratrol triggers the pro-apoptotic endoplasmic reticulum stress response and represses pro-survival XBP1 signaling in human multiple myeloma cells. Exp. Hematol., 2011, 39(10), 999-1006.
[http://dx.doi.org/10.1016/j.exphem.2011.06.007] [PMID: 21723843]
[19]
Jakubikova, J.; Cervi, D.; Ooi, M.; Kim, K.; Nahar, S.; Klippel, S.; Cholujova, D.; Leiba, M.; Daley, J.F.; Delmore, J.; Negri, J.; Blotta, S.; McMillin, D.W.; Hideshima, T.; Richardson, P.G.; Sedlak, J.; Anderson, K.C.; Mitsiades, C.S. Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma. Haematologica, 2011, 96(8), 1170-1179.
[http://dx.doi.org/10.3324/haematol.2010.029363] [PMID: 21712538]
[20]
Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 2012, 13(7), 484-492.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[21]
Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet., 2000, 9(16), 2395-2402.
[http://dx.doi.org/10.1093/hmg/9.16.2395] [PMID: 11005794]
[22]
Galm, O.; Wilop, S.; Reichelt, J.; Jost, E.; Gehbauer, G.; Herman, J.G.; Osieka, R. DNA methylation changes in multiple myeloma. Leukemia, 2004, 18(10), 1687-1692.
[http://dx.doi.org/10.1038/sj.leu.2403434] [PMID: 15318245]
[23]
Bieliauskas, A.V.; Pflum, M.K. Isoform-selective histone deacetylase inhibitors. Chem. Soc. Rev., 2008, 37(7), 1402-1413.
[http://dx.doi.org/10.1039/b703830p] [PMID: 18568166]
[24]
Neri, P.; Tagliaferri, P.; Di Martino, M.T.; Calimeri, T.; Amodio, N.; Bulotta, A.; Ventura, M.; Eramo, P.O.; Viscomi, C.; Arbitrio, M.; Rossi, M.; Caraglia, M.; Munshi, N.C.; Anderson, K.C.; Tassone, P. In vivo anti-myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor. Br. J. Haematol., 2008, 143(4), 520-531.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07387.x] [PMID: 18986388]
[25]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[26]
von Metzler, I.; Krebbel, H.; Kuckelkorn, U.; Heider, U.; Jakob, C.; Kaiser, M.; Fleissner, C.; Terpos, E.; Sezer, O. Curcumin diminishes human osteoclastogenesis by inhibition of the signalosome-associated I kappaB kinase. J. Cancer Res. Clin. Oncol., 2009, 135(2), 173-179.
[http://dx.doi.org/10.1007/s00432-008-0461-8] [PMID: 18766375]
[27]
Kunnumakkara, A.B.; Anand, P.; Aggarwal, B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett., 2008, 269(2), 199-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.009] [PMID: 18479807]
[28]
Sung, B.; Kunnumakkara, A.B.; Sethi, G.; Anand, P.; Guha, S.; Aggarwal, B.B. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol. Cancer Ther., 2009, 8(4), 959-970.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0905] [PMID: 19372569]
[29]
Allegra, A.; Speciale, A.; Molonia, M.S.; Guglielmo, L.; Musolino, C.; Ferlazzo, G.; Costa, G.; Saija, A.; Cimino, F. Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF-κB pathways. Toxicol. In Vitro, 2018, 47, 186-194.
[http://dx.doi.org/10.1016/j.tiv.2017.12.001] [PMID: 29223572]
[30]
Gomez-Bougie, P.; Halliez, M.; Maïga, S.; Godon, C.; Kervoëlen, C.; Pellat-Deceunynck, C.; Moreau, P.; Amiot, M. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups. Cancer Biol. Ther., 2015, 16(1), 60-65.
[http://dx.doi.org/10.4161/15384047.2014.986997] [PMID: 25517601]
[31]
Raimondi, L.; De Luca, A.; Costa, V.; Amodio, N.; Carina, V.; Bellavia, D.; Tassone, P.; Pagani, S.; Fini, M.; Alessandro, R.; Giavaresi, G. Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment. Oncotarget, 2017, 8(59), 100831-100851.
[http://dx.doi.org/10.18632/oncotarget.19852] [PMID: 29246026]
[32]
Amodio, N.; Di Martino, M.T.; Neri, A.; Tagliaferri, P.; Tassone, P. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin. Biol. Ther., 2013, 13(Suppl. 1), S125-S137.
[http://dx.doi.org/10.1517/14712598.2013.796356] [PMID: 23692413]
[33]
Calura, E.; Bisognin, A.; Manzoni, M.; Todoerti, K.; Taiana, E.; Sales, G.; Morgan, G.J.; Tonon, G.; Amodio, N.; Tassone, P.; Neri, A.; Agnelli, L.; Romualdi, C.; Bortoluzzi, S. Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients. Oncotarget, 2016, 7(3), 2367-2378.
[http://dx.doi.org/10.18632/oncotarget.6151] [PMID: 26496024]
[34]
Nobili, L.; Ronchetti, D.; Agnelli, L.; Taiana, E.; Vinci, C.; Neri, A. Long non-coding RNAs in multiple myeloma. Genes (Basel), 2018, 9(2)E69
[http://dx.doi.org/10.3390/genes9020069] [PMID: 29389884]
[35]
Amodio, N.; D’Aquila, P.; Passarino, G.; Tassone, P.; Bellizzi, D. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opin. Ther. Targets, 2017, 21(1), 91-101.
[http://dx.doi.org/10.1080/14728222.2016.1266339] [PMID: 27892767]
[36]
Amodio, N.; Stamato, M.A.; Juli, G.; Morelli, E.; Fulciniti, M.; Manzoni, M.; Taiana, E.; Agnelli, L.; Cantafio, M.E.G.; Romeo, E.; Raimondi, L.; Caracciolo, D.; Zuccalà, V.; Rossi, M.; Neri, A.; Munshi, N.C.; Tagliaferri, P.; Tassone, P. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia, 2018, 32(9), 1948-1957.
[http://dx.doi.org/10.1038/s41375-018-0067-3] [PMID: 29487387]
[37]
Amodio, N.; Raimondi, L.; Juli, G.; Stamato, M.A.; Caracciolo, D.; Tagliaferri, P.; Tassone, P. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J. Hematol. Oncol., 2018, 11(1), 63.
[http://dx.doi.org/10.1186/s13045-018-0606-4] [PMID: 29739426]
[38]
Leone, E.; Morelli, E.; Di Martino, M.T.; Amodio, N.; Foresta, U.; Gullà, A.; Rossi, M.; Neri, A.; Giordano, A.; Munshi, N.C.; Anderson, K.C.; Tagliaferri, P.; Tassone, P. Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth. Clin. Cancer Res., 2013, 19(8), 2096-2106.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3325] [PMID: 23446999]
[39]
Pitari, M.R.; Rossi, M.; Amodio, N.; Botta, C.; Morelli, E.; Federico, C.; Gullà, A.; Caracciolo, D.; Di Martino, M.T.; Arbitrio, M.; Giordano, A.; Tagliaferri, P.; Tassone, P. Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget, 2015, 6(29), 27343-27358.
[http://dx.doi.org/10.18632/oncotarget.4398] [PMID: 26160841]
[40]
Gullà, A.; Di Martino, M.T.; Gallo Cantafio, M.E.; Morelli, E.; Amodio, N.; Botta, C.; Pitari, M.R.; Lio, S.G.; Britti, D.; Stamato, M.A.; Hideshima, T.; Munshi, N.C.; Anderson, K.C.; Tagliaferri, P.; Tassone, P.A. 13 mer LNA-i-miR-221 inhibitor restores drug sensitivity in melphalan-refractory multiple myeloma cells. Clin. Cancer Res., 2016, 22(5), 1222-1233.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0489] [PMID: 26527748]
[41]
Leotta, M.; Biamonte, L.; Raimondi, L.; Ronchetti, D.; Di Martino, M.T.; Botta, C.; Leone, E.; Pitari, M.R.; Neri, A.; Giordano, A.; Tagliaferri, P.; Tassone, P.; Amodio, N.A. p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells. J. Cell. Physiol., 2014, 229(12), 2106-2116.
[http://dx.doi.org/10.1002/jcp.24669] [PMID: 24819167]
[42]
Gallo Cantafio, M.E.; Nielsen, B.S.; Mignogna, C.; Arbitrio, M.; Botta, C.; Frandsen, N.M.; Rolfo, C.; Tagliaferri, P.; Tassone, P.; Di Martino, M.T. Pharmacokinetics and pharmacodynamics of a 13-mer LNA-inhibitor-miR-221 in mice and non-human primates. Mol. Ther. Nucleic Acids, 2016, 5(6)
[http://dx.doi.org/10.1038/mtna.2016.36] [PMID: 27327137]
[43]
Zarone, M.R.; Misso, G.; Grimaldi, A.; Zappavigna, S.; Russo, M.; Amler, E.; Di Martino, M.T.; Amodio, N.; Tagliaferri, P.; Tassone, P.; Caraglia, M. Evidence of novel miR-34a-based therapeutic approaches for multiple myeloma treatment. Sci. Rep., 2017, 7(1), 17949.
[http://dx.doi.org/10.1038/s41598-017-18186-0] [PMID: 29263373]
[44]
Amodio, N.; Rossi, M.; Raimondi, L.; Pitari, M.R.; Botta, C.; Tagliaferri, P.; Tassone, P. miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget, 2015, 6(15), 12837-12861.
[http://dx.doi.org/10.18632/oncotarget.3805] [PMID: 25968566]
[45]
Amodio, N.; Stamato, M.A.; Gullà, A.M.; Morelli, E.; Romeo, E.; Raimondi, L.; Pitari, M.R.; Ferrandino, I.; Misso, G.; Caraglia, M.; Perrotta, I.; Neri, A.; Fulciniti, M.; Rolfo, C.; Anderson, K.C.; Munshi, N.C.; Tagliaferri, P.; Tassone, P. Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol. Cancer Ther., 2016, 15(6), 1364-1375.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0985] [PMID: 27196750]
[46]
Stamato, M.A.; Juli, G.; Romeo, E.; Ronchetti, D.; Arbitrio, M.; Caracciolo, D.; Neri, A.; Tagliaferri, P.; Tassone, P.; Amodio, N. Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma. Oncotarget, 2017, 8(63), 106527-106537.
[http://dx.doi.org/10.18632/oncotarget.22507] [PMID: 29290968]
[47]
Fulciniti, M.; Amodio, N.; Bandi, R.L.; Cagnetta, A.; Samur, M.K.; Acharya, C.; Prabhala, R.; D’Aquila, P.; Bellizzi, D.; Passarino, G.; Adamia, S.; Neri, A.; Hunter, Z.R.; Treon, S.P.; Anderson, K.C.; Tassone, P.; Munshi, N.C. miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth. Blood Cancer J., 2016, 6e380
[http://dx.doi.org/10.1038/bcj.2015.106] [PMID: 26771806]
[48]
Amodio, N.; Di Martino, M.T.; Foresta, U.; Leone, E.; Lionetti, M.; Leotta, M.; Gullà, A.M.; Pitari, M.R.; Conforti, F.; Rossi, M.; Agosti, V.; Fulciniti, M.; Misso, G.; Morabito, F.; Ferrarini, M.; Neri, A.; Caraglia, M.; Munshi, N.C.; Anderson, K.C.; Tagliaferri, P.; Tassone, P. miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis., 2012, 3e436
[http://dx.doi.org/10.1038/cddis.2012.175] [PMID: 23190608]
[49]
Amodio, N.; Bellizzi, D.; Leotta, M.; Raimondi, L.; Biamonte, L.; D’Aquila, P.; Di Martino, M.T.; Calimeri, T.; Rossi, M.; Lionetti, M.; Leone, E.; Passarino, G.; Neri, A.; Giordano, A.; Tagliaferri, P.; Tassone, P. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle, 2013, 12(23), 3650-3662.
[http://dx.doi.org/10.4161/cc.26585] [PMID: 24091729]
[50]
Botta, C.; Cucè, M.; Pitari, M.R.; Caracciolo, D.; Gullà, A.; Morelli, E.; Riillo, C.; Biamonte, L.; Gallo Cantafio, M.E.; Prabhala, R.; Mignogna, C.; Di Vito, A.; Altomare, E.; Amodio, N.; Di Martino, M.T.; Correale, P.; Rossi, M.; Giordano, A.; Munshi, N.C.; Tagliaferri, P.; Tassone, P. MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells. Leukemia, 2018, 32(4), 1003-1015.
[http://dx.doi.org/10.1038/leu.2017.336] [PMID: 29158557]
[51]
Wu, C.; Ruan, T.; Liu, W.; Zhu, X.; Pan, J.; Lu, W.; Yan, C.; Tao, K.; Zhang, W.; Zhang, C. Effect and mechanism of curcumin on EZH2 - miR-101 regulatory feedback loop in multiple myeloma. Curr. Pharm. Des., 2018, 24(5), 564-575.
[http://dx.doi.org/10.2174/1381612823666170317164639] [PMID: 28322158]
[52]
Huang, D.; Wang, X.; Zhuang, C.; Shi, W.; Liu, M.; Tu, Q.; Zhang, D.; Hu, L. Reciprocal negative feedback loop between EZH2 and miR-101-1 contributes to miR-101 deregulation in hepatocellular carcinoma. Oncol. Rep., 2016, 35(2), 1083-1090.
[http://dx.doi.org/10.3892/or.2015.4467] [PMID: 26718325]
[53]
Bharti, A.C.; Takada, Y.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis. J. Immunol., 2004, 172(10), 5940-5947.
[http://dx.doi.org/10.4049/jimmunol.172.10.5940] [PMID: 15128775]
[54]
Golombick, T.; Diamond, T.H.; Badmaev, V.; Manoharan, A.; Ramakrishna, R. The potential role of curcumin in patients with monoclonal gammopathy of undefined significance--its effect on paraproteinemia and the urinary N-telopeptide of type I collagen bone turnover marker. Clin. Cancer Res., 2009, 15(18), 5917-5922.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2217] [PMID: 19737963]
[55]
Bang, M.H.; Van Riep, T.; Thinh, N.T.; Song, H.; Dung, T.T.; Van Truong, L.; Van Don, L.; Ky, T.D.; Pan, D.; Shaheen, M.; Ghoneum, M. Arabinoxylan rice bran (MGN-3) enhances the effects of interventional therapies for the treatment of hepatocellular carcinoma: a three-year randomized clinical trial. Anticancer Res., 2010, 30(12), 5145-5151.
[PMID: 21187503]
[56]
Ghoneum, M.; Badr El-Din, N.K.; Ali, D.A.; El-Dein, M.A. Modified arabinoxylan from rice bran, MGN-3/biobran, sensitizes metastatic breast cancer cells to paclitaxel in vitro. Anticancer Res., 2014, 34(1), 81-87.
[PMID: 24403447]
[57]
Ghoneum, M.; Gollapudi, S. Modified arabinoxylan rice bran (MGN-3/Biobran) sensitizes human T cell leukemia cells to death receptor (CD95)-induced apoptosis. Cancer Lett., 2003, 201(1), 41-49.
[http://dx.doi.org/10.1016/S0304-3835(03)00458-0] [PMID: 14580685]
[58]
Ghoneum, M.; Gollapudi, S. Synergistic apoptotic effect of arabinoxylan rice bran (MGN-3/Biobran) and curcumin (turmeric) on human multiple myeloma cell line U266 in vitro. Neoplasma, 2011, 58(2), 118-123.
[http://dx.doi.org/10.4149/neo_2011_02_118] [PMID: 21275460]
[59]
Golombick, T.; Diamond, T.H.; Manoharan, A.; Ramakrishna, R. Addition of rice bran arabinoxylan to curcumin therapy may be of benefit to patients with early-stage b-cell lymphoid malignancies (monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, or stage 0/1 chronic lymphocytic leukemia): A preliminary clinical study. Integr. Cancer Ther., 2016, 15(2), 183-189.
[http://dx.doi.org/10.1177/1534735416635742] [PMID: 27154182]
[60]
Zaidi, A.; Lai, M.; Cavenagh, J. Long-term stabilisation of myeloma with curcumin. BMJ Case Rep., 2017, 2017, pii: bcr2016218148
[http://dx.doi.org/10.1136/bcr-2016-218148] [PMID: 28413157]
[61]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[62]
Shukla, Y.; Singh, R. Resveratrol and cellular mechanisms of cancer prevention. Ann. N. Y. Acad. Sci., 2011, 1215, 1-8.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05870.x] [PMID: 21261635]
[63]
Kundu, J.K.; Surh, Y.J. Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets. Mutat. Res., 2004, 555(1-2), 65-80.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.05.019] [PMID: 15476852]
[64]
Bhardwaj, A.; Sethi, G.; Vadhan-Raj, S.; Bueso-Ramos, C.; Takada, Y.; Gaur, U.; Nair, A.S.; Shishodia, S.; Aggarwal, B.B. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood, 2007, 109(6), 2293-2302.
[http://dx.doi.org/10.1182/blood-2006-02-003988] [PMID: 17164350]
[65]
Sun, C.Y.; Hu, Y.; Guo, T.; Wang, H.F.; Zhang, X.P.; He, W.J.; Tan, H. Resveratrol as a novel agent for treatment of multiple myeloma with matrix metalloproteinase inhibitory activity. Acta Pharmacol. Sin., 2006, 27(11), 1447-1452.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00343.x] [PMID: 17049120]
[66]
Boissy, P.; Andersen, T.L.; Abdallah, B.M.; Kassem, M.; Plesner, T.; Delaissé, J.M. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res., 2005, 65(21), 9943-9952.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0651] [PMID: 16267019]
[67]
Kala, R.; Shah, H.N.; Martin, S.L.; Tollefsbol, T.O. Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer, 2015, 15, 672.
[http://dx.doi.org/10.1186/s12885-015-1693-z] [PMID: 26459286]
[68]
Huang, W.C.; Chan, M.L.; Chen, M.J.; Tsai, T.H.; Chen, Y.J. Modulation of macrophage polarization and lung cancer cell stemness by MUC1 and development of a related small-molecule inhibitor pterostilbene. Oncotarget, 2016, 7(26), 39363-39375.
[http://dx.doi.org/10.18632/oncotarget.8101] [PMID: 27276704]
[69]
Dhar, S.; Kumar, A.; Rimando, A.M.; Zhang, X.; Levenson, A.S. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget, 2015, 6(29), 27214-27226.
[http://dx.doi.org/10.18632/oncotarget.4877] [PMID: 26318586]
[70]
Benlloch, M.; Obrador, E.; Valles, S.L.; Rodriguez, M.L.; Sirerol, J.A.; Alcácer, J.; Pellicer, J.A.; Salvador, R.; Cerdá, C.; Sáez, G.T.; Estrela, J.M. Pterostilbene decreases the antioxidant defenses of aggressive cancer cells in vivo: A physiological glucocorticoids- and Nrf2-dependent mechanism. Antioxid. Redox Signal., 2016, 24(17), 974-990.
[http://dx.doi.org/10.1089/ars.2015.6437] [PMID: 26651028]
[71]
Xie, B.; Xu, Z.; Hu, L.; Chen, G.; Wei, R.; Yang, G.; Li, B.; Chang, G.; Sun, X.; Wu, H.; Zhang, Y.; Dai, B.; Tao, Y.; Shi, J.; Zhu, W. Pterostilbene inhibits human multiple myeloma cells via erk1/2 and jnk pathway in vitro and in vivo. Int. J. Mol. Sci., 2016, 17(11)E1927
[http://dx.doi.org/10.3390/ijms17111927] [PMID: 27869675]
[72]
Chen, G.; Xu, Z.; Chang, G.; Hou, J.; Hu, L.; Zhang, Y.; Yu, D.; Li, B.; Chang, S.; Xie, Y.; Zhang, Y.; Wei, R.; Wu, H.; Xiao, W.; Sun, X.; Tao, Y.; Gao, L.; Dai, B.; Shi, J.; Zhu, W. The blueberry component pterostilbene has potent anti-myeloma activity in bortezomib-resistant cells. Oncol. Rep., 2017, 38(1), 488-496.
[http://dx.doi.org/10.3892/or.2017.5675] [PMID: 28560392]
[73]
Katagiri, K.; Sato, K.; Hayakawa, S.; Matsushima, T.; Minato, H.; Verticillin, A. Verticillin A, a new antibiotic from Verticillium sp. J. Antibiot. (Tokyo), 1970, 23(8), 420-422.
[http://dx.doi.org/10.7164/antibiotics.23.420] [PMID: 5465723]
[74]
Neuss, N.; Boeck, L.D.; Brannon, D.R.; Cline, J.C.; DeLong, D.C.; Gorman, M.; Huckstep, L.L.; Lively, D.H.; Mabe, J.; Marsh, M.M.; Molloy, B.B.; Nagarajan, R.; Nelson, J.D.; Stark, W.M. Aranotin and related metabolites from Arachniotus aureus (Eidam) Schroeter. IV. Fermentation, isolation, structure elucidation, biosynthesis, and antiviral properties. Antimicrob. Agents Chemother., 1968, 8, 213-219.
[PMID: 5735362]
[75]
Yamada, A.; Kataoka, T.; Nagai, K. The fungal metabolite gliotoxin: immunosuppressive activity on CTL-mediated cytotoxicity. Immunol. Lett., 2000, 71(1), 27-32.
[http://dx.doi.org/10.1016/S0165-2478(99)00155-8] [PMID: 10709782]
[76]
Kawahara, N.; Kurata, A.; Hakamatsuka, T.; Sekita, S.; Satake, M. Two new cucurbitacin glucosides, opercurins A and B, from the Brazilian folk medicine “Buchinha” (Luffa operculata). Chem. Pharm. Bull. (Tokyo), 2004, 52(8), 1018-1020.
[http://dx.doi.org/10.1248/cpb.52.1018] [PMID: 15305007]
[77]
Vigushin, D.M.; Mirsaidi, N.; Brooke, G.; Sun, C.; Pace, P.; Inman, L.; Moody, C.J.; Coombes, R.C. Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med. Oncol., 2004, 21(1), 21-30.
[http://dx.doi.org/10.1385/MO:21:1:21] [PMID: 15034210]
[78]
Isham, C.R.; Tibodeau, J.D.; Jin, W.; Xu, R.; Timm, M.M.; Bible, K.C. Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood, 2007, 109(6), 2579-2588.
[http://dx.doi.org/10.1182/blood-2006-07-027326] [PMID: 17090648]
[79]
Vo, M.C.; Nguyen-Pham, T.N.; Lee, H.J.; Jung, S.H.; Choi, N.R.; Hoang, M.D.; Kim, H.J.; Lee, J.J. Chaetocin enhances dendritic cell function via the induction of heat shock protein and cancer testis antigens in myeloma cells. Oncotarget, 2017, 8(28), 46047-46056.
[http://dx.doi.org/10.18632/oncotarget.17517] [PMID: 28512265]
[80]
Urizar, N.L.; Moore, D.D. GUGULIPID: a natural cholesterol-lowering agent. Annu. Rev. Nutr., 2003, 23, 303-313.
[http://dx.doi.org/10.1146/annurev.nutr.23.011702.073102] [PMID: 12626688]
[81]
Sinal, C.J.; Gonzalez, F.J. Guggulsterone: an old approach to a new problem. Trends Endocrinol. Metab., 2002, 13(7), 275-276.
[http://dx.doi.org/10.1016/S1043-2760(02)00640-9] [PMID: 12163224]
[82]
Singh, S.V.; Zeng, Y.; Xiao, D.; Vogel, V.G.; Nelson, J.B.; Dhir, R.; Tripathi, Y.B. Caspase-dependent apoptosis induction by guggulsterone, a constituent of Ayurvedic medicinal plant Commiphora mukul, in PC-3 human prostate cancer cells is mediated by Bax and Bak. Mol. Cancer Ther., 2005, 4(11), 1747-1754.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0223] [PMID: 16275996]
[83]
Singh, S.V.; Choi, S.; Zeng, Y.; Hahm, E.R.; Xiao, D. Guggulsterone-induced apoptosis in human prostate cancer cells is caused by reactive oxygen intermediate dependent activation of c-Jun NH2-terminal kinase. Cancer Res., 2007, 67(15), 7439-7449.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0120] [PMID: 17671214]
[84]
Ahn, K.S.; Sethi, G.; Sung, B.; Goel, A.; Ralhan, R.; Aggarwal, B.B. Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1. Cancer Res., 2008, 68(11), 4406-4415.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6696] [PMID: 18519703]
[85]
Ichikawa, H.; Aggarwal, B.B. Guggulsterone inhibits osteoclastogenesis induced by receptor activator of nuclear factor-kappaB ligand and by tumor cells by suppressing nuclear factor-kappaB activation. Clin. Cancer Res., 2006, 12(2), 662-668.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1749] [PMID: 16428513]
[86]
Pinna, G.F.; Fiorucci, M.; Reimund, J.M.; Taquet, N.; Arondel, Y.; Muller, C.D. Celastrol inhibits pro-inflammatory cytokine secretion in Crohn’s disease biopsies. Biochem. Biophys. Res. Commun., 2004, 322(3), 778-786.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.186] [PMID: 15336532]
[87]
Allison, A.C.; Cacabelos, R.; Lombardi, V.R.; Alvarez, X.A.; Vigo, C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25(7), 1341-1357.
[http://dx.doi.org/10.1016/S0278-5846(01)00192-0] [PMID: 11513350]
[88]
Sethi, G.; Ahn, K.S.; Pandey, M.K.; Aggarwal, B.B. Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood, 2007, 109(7), 2727-2735.
[http://dx.doi.org/10.1182/blood-2006-10-050807] [PMID: 17110449]
[89]
Kannaiyan, R.; Hay, H.S.; Rajendran, P.; Li, F.; Shanmugam, M.K.; Vali, S.; Abbasi, T.; Kapoor, S.; Sharma, A.; Kumar, A.P.; Chng, W.J.; Sethi, G. Celastrol inhibits proliferation and induces chemosensitization through down-regulation of NF-κB and STAT3 regulated gene products in multiple myeloma cells. Br. J. Pharmacol., 2011, 164(5), 1506-1521.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01449.x] [PMID: 21506956]
[90]
Huang, Y.; Zhou, Y.; Fan, Y.; Zhou, D. Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett., 2008, 264(1), 101-106.
[http://dx.doi.org/10.1016/j.canlet.2008.01.043] [PMID: 18343027]
[91]
Lu, Z.; Jin, Y.; Qiu, L.; Lai, Y.; Pan, J. Celastrol, a novel HSP90 inhibitor, depletes Bcr-Abl and induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation. Cancer Lett., 2010, 290(2), 182-191.
[http://dx.doi.org/10.1016/j.canlet.2009.09.006] [PMID: 19819619]
[92]
Pang, X.; Yi, Z.; Zhang, J.; Lu, B.; Sung, B.; Qu, W.; Aggarwal, B.B.; Liu, M. Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway. Cancer Res., 2010, 70(5), 1951-1959.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3201] [PMID: 20160026]
[93]
Tozawa, K.; Sagawa, M.; Kizaki, M. Quinone methide tripterine, celastrol, induces apoptosis in human myeloma cells via NF-κB pathway. Int. J. Oncol., 2011, 39(5), 1117-1122.
[http://dx.doi.org/10.3892/ijo.2011.1161] [PMID: 21850367]
[94]
Ni, H.; Zhao, W.; Kong, X.; Li, H.; Ouyang, J. NF-kappa B modulation is involved in celastrol induced human multiple myeloma cell apoptosis. PLoS One, 2014, 9(4)e95846
[http://dx.doi.org/10.1371/journal.pone.0095846] [PMID: 24755677]
[95]
Hu, L.; Wu, H.; Li, B.; Song, D.; Yang, G.; Chen, G.; Xie, B.; Xu, Z.; Zhang, Y.; Yu, D.; Hou, J.; Xiao, W.; Sun, X.; Chang, G.; Zhang, Y.; Gao, L.; Dai, B.; Tao, Y.; Shi, J.; Zhu, W. Dihydrocelastrol inhibits multiple myeloma cell proliferation and promotes apoptosis through ERK1/2 and IL-6/STAT3 pathways in vitro and in vivo. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(5), 420-427.
[http://dx.doi.org/10.1093/abbs/gmx021] [PMID: 28338993]
[96]
Khader, M.; Eckl, P.M. Thymoquinone: an emerging natural drug with a wide range of medical applications. Iran. J. Basic Med. Sci., 2014, 17(12), 950-957.
[PMID: 25859298]
[97]
Woo, C.C.; Kumar, A.P.; Sethi, G.; Tan, K.H. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem. Pharmacol., 2012, 83(4), 443-451.
[http://dx.doi.org/10.1016/j.bcp.2011.09.029] [PMID: 22005518]
[98]
Li, F.; Rajendran, P.; Sethi, G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br. J. Pharmacol., 2010, 161(3), 541-554.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00874.x] [PMID: 20880395]
[99]
Yamazaki, D.; Kurisu, S.; Takenawa, T. Regulation of cancer cell motility through actin reorganization. Cancer Sci., 2005, 96(7), 379-386.
[http://dx.doi.org/10.1111/j.1349-7006.2005.00062.x] [PMID: 16053508]
[100]
Badr, G.; Mohany, M.; Abu-Tarboush, F. Thymoquinone decreases F-actin polymerization and the proliferation of human multiple myeloma cells by suppressing STAT3 phosphorylation and Bcl2/Bcl-XL expression. Lipids Health Dis., 2011, 10, 236.
[http://dx.doi.org/10.1186/1476-511X-10-236] [PMID: 22177381]
[101]
Fernandis, A.Z.; Cherla, R.P.; Ganju, R.K. Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J. Biol. Chem., 2003, 278(11), 9536-9543.
[http://dx.doi.org/10.1074/jbc.M211803200] [PMID: 12519755]
[102]
Badr, G.; Lefevre, E.A.; Mohany, M. Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple myeloma cells and increases their susceptibility to Fas-mediated apoptosis. PLoS One, 2011, 6(9)e23741
[http://dx.doi.org/10.1371/journal.pone.0023741] [PMID: 21912642]
[103]
Siveen, K.S.; Mustafa, N.; Li, F.; Kannaiyan, R.; Ahn, K.S.; Kumar, A.P.; Chng, W.J.; Sethi, G. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget, 2014, 5(3), 634-648.
[http://dx.doi.org/10.18632/oncotarget.1596] [PMID: 24504138]
[104]
Wu, X.; Zhou, Q.H.; Xu, K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol. Sin., 2009, 30(5), 501-512.
[http://dx.doi.org/10.1038/aps.2009.50] [PMID: 19417730]
[105]
Zhang, Y.; Talalay, P. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res., 1994, 54(7)(Suppl.), 1976s-1981s.
[PMID: 8137323]
[106]
Hecht, S.S. Chemoprevention by isothiocyanates. J. Cell. Biochem. Suppl., 1995, 22, 195-209.
[http://dx.doi.org/10.1002/jcb.240590825] [PMID: 8538199]
[107]
Mi, L.; Gan, N.; Chung, F.L. Isothiocyanates inhibit proteasome activity and proliferation of multiple myeloma cells. Carcinogenesis, 2011, 32(2), 216-223.
[http://dx.doi.org/10.1093/carcin/bgq242] [PMID: 21109604]
[108]
Brunelli, D.; Tavecchio, M.; Falcioni, C.; Frapolli, R.; Erba, E.; Iori, R.; Rollin, P.; Barillari, J.; Manzotti, C.; Morazzoni, P.; D’Incalci, M. The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem. Pharmacol., 2010, 79(8), 1141-1148.
[http://dx.doi.org/10.1016/j.bcp.2009.12.008] [PMID: 20006591]
[109]
Lu, Q.; Lin, X.; Feng, J.; Zhao, X.; Gallagher, R.; Lee, M.Y.; Chiao, J.W.; Liu, D. Phenylhexyl isothiocyanate has dual function as histone deacetylase inhibitor and hypomethylating agent and can inhibit myeloma cell growth by targeting critical pathways. J. Hematol. Oncol., 2008, 1, 6.
[http://dx.doi.org/10.1186/1756-8722-1-6] [PMID: 18577263]
[110]
Nakagawa, H.; Wachi, M.; Woo, J.T.; Kato, M.; Kasai, S.; Takahashi, F.; Lee, I.S.; Nagai, K. Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem. Biophys. Res. Commun., 2002, 292(1), 94-101.
[http://dx.doi.org/10.1006/bbrc.2002.6622] [PMID: 11890677]
[111]
Yun, J.H.; Pang, E.K.; Kim, C.S.; Yoo, Y.J.; Cho, K.S.; Chai, J.K.; Kim, C.K.; Choi, S.H. Inhibitory effects of green tea polyphenol (-)-epigallocatechin gallate on the expression of matrix metalloproteinase-9 and on the formation of osteoclasts. J. Periodontal Res., 2004, 39(5), 300-307.
[http://dx.doi.org/10.1111/j.1600-0765.2004.00743.x] [PMID: 15324350]
[112]
Vali, B.; Rao, L.G.; El-Sohemy, A. Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J. Nutr. Biochem., 2007, 18(5), 341-347.
[http://dx.doi.org/10.1016/j.jnutbio.2006.06.005] [PMID: 16963251]
[113]
Tomás-Barberán, F.A.; Andrés-Lacueva, C. Polyphenols and health: current state and progress. J. Agric. Food Chem., 2012, 60(36), 8773-8775.
[http://dx.doi.org/10.1021/jf300671j] [PMID: 22578138]
[114]
Kishimoto, Y.; Tani, M.; Kondo, K. Pleiotropic preventive effects of dietary polyphenols in cardiovascular diseases. Eur. J. Clin. Nutr., 2013, 67(5), 532-535.
[http://dx.doi.org/10.1038/ejcn.2013.29] [PMID: 23403879]
[115]
Corcoran, M.P.; McKay, D.L.; Blumberg, J.B. Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J. Nutr. Gerontol. Geriatr., 2012, 31(3), 176-189.
[http://dx.doi.org/10.1080/21551197.2012.698219] [PMID: 22888837]
[116]
Golden, E.B.; Lam, P.Y.; Kardosh, A.; Gaffney, K.J.; Cadenas, E.; Louie, S.G.; Petasis, N.A.; Chen, T.C.; Schönthal, A.H. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood, 2009, 113(23), 5927-5937.
[http://dx.doi.org/10.1182/blood-2008-07-171389] [PMID: 19190249]
[117]
Wang, Q.; Li, J.; Gu, J.; Huang, B.; Zhao, Y.; Zheng, D.; Ding, Y.; Zeng, L. Potentiation of (-)-epigallocatechin-3-gallate-induced apoptosis by bortezomib in multiple myeloma cells. Acta Biochim. Biophys. Sin. (Shanghai), 2009, 41(12), 1018-1026.
[http://dx.doi.org/10.1093/abbs/gmp094] [PMID: 20011976]
[118]
Vande Broek, I.; Vanderkerken, K.; De Greef, C.; Asosingh, K.; Straetmans, N.; Van Camp, B.; Van Riet, I. Laminin-1-induced migration of multiple myeloma cells involves the high-affinity 67 kD laminin receptor. Br. J. Cancer, 2001, 85(9), 1387-1395.
[http://dx.doi.org/10.1054/bjoc.2001.2078] [PMID: 11720479]
[119]
Shammas, M.A.; Neri, P.; Koley, H.; Batchu, R.B.; Bertheau, R.C.; Munshi, V.; Prabhala, R.; Fulciniti, M.; Tai, Y.T.; Treon, S.P.; Goyal, R.K.; Anderson, K.C.; Munshi, N.C. Specific killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood, 2006, 108(8), 2804-2810.
[http://dx.doi.org/10.1182/blood-2006-05-022814] [PMID: 16809610]
[120]
Nakazato, T.; Ito, K.; Ikeda, Y.; Kizaki, M. Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin. Cancer Res., 2005, 11(16), 6040-6049.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2273] [PMID: 16115949]
[121]
Jin, L.; Li, C.; Xu, Y.; Wang, L.; Liu, J.; Wang, D.; Hong, C.; Jiang, Z.; Ma, Y.; Chen, Q.; Yu, F. Epigallocatechin gallate promotes p53 accumulation and activity via the inhibition of MDM2-mediated p53 ubiquitination in human lung cancer cells. Oncol. Rep., 2013, 29(5), 1983-1990.
[http://dx.doi.org/10.3892/or.2013.2343] [PMID: 23483203]
[122]
Thakur, V.S.; Gupta, K.; Gupta, S. Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases. Int. J. Oncol., 2012, 41(1), 353-361.
[http://dx.doi.org/10.3892/ijo.2012.1449] [PMID: 22552582]
[123]
Gordon, M.W.; Yan, F.; Zhong, X.; Mazumder, P.B.; Xu-Monette, Z.Y.; Zou, D.; Young, K.H.; Ramos, K.S.; Li, Y. Regulation of p53-targeting microRNAs by polycyclic aromatic hydrocarbons: Implications in the etiology of multiple myeloma. Mol. Carcinog., 2015, 54(10), 1060-1069.
[http://dx.doi.org/10.1002/mc.22175] [PMID: 24798859]
[124]
Fusco, B.M.; Giacovazzo, M. Peppers and pain. The promise of capsaicin. Drugs, 1997, 53(6), 909-914.
[http://dx.doi.org/10.2165/00003495-199753060-00001] [PMID: 9179523]
[125]
Szallasi, A. Vanilloid (capsaicin) receptors in health and disease. Am. J. Clin. Pathol., 2002, 118(1), 110-121.
[http://dx.doi.org/10.1309/7AYY-VVH1-GQT5-J4R2] [PMID: 12109845]
[126]
Díaz-Laviada, I. Effect of capsaicin on prostate cancer cells. Future Oncol., 2010, 6(10), 1545-1550.
[http://dx.doi.org/10.2217/fon.10.117] [PMID: 21062154]
[127]
Bhutani, M.; Pathak, A.K.; Nair, A.S.; Kunnumakkara, A.B.; Guha, S.; Sethi, G.; Aggarwal, B.B. Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin. Cancer Res., 2007, 13(10), 3024-3032.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2575] [PMID: 17505005]
[128]
Donald, G.; Hertzer, K.; Eibl, G. Baicalein--an intriguing therapeutic phytochemical in pancreatic cancer. Curr. Drug Targets, 2012, 13(14), 1772-1776.
[http://dx.doi.org/10.2174/138945012804545470] [PMID: 23140288]
[129]
Lian, J.P.; Word, B.; Taylor, S.; Hammons, G.J.; Lyn-Cook, B.D. Modulation of the constitutive activated STAT3 transcription factor in pancreatic cancer prevention: effects of indole-3-carbinol (I3C) and genistein. Anticancer Res., 2004, 24(1), 133-137.
[PMID: 15015587]
[130]
Xu, C.P.; Cai, H.L.; He, L.; Ma, Z.; Liu, S.Q. [Effect of baicalein on proliferation and migration in multiple myeloma cell lines RPMI 8226 and U266 cells] Zhonghua Xue Ye Xue Za Zhi, 2012, 33(11), 938-943.
[PMID: 23363752]
[131]
Liu, S.; Ma, Z.; Cai, H.; Li, Q.; Rong, W.; Kawano, M. Inhibitory effect of baicalein on IL-6-mediated signaling cascades in human myeloma cells. Eur. J. Haematol., 2010, 84(2), 137-144.
[http://dx.doi.org/10.1111/j.1600-0609.2009.01365.x] [PMID: 19878271]
[132]
Ma, Z.; Otsuyama, K.; Liu, S.; Abroun, S.; Ishikawa, H.; Tsuyama, N.; Obata, M.; Li, F.J.; Zheng, X.; Maki, Y.; Miyamoto, K.; Kawano, M.M. Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood, 2005, 105(8), 3312-3318.
[http://dx.doi.org/10.1182/blood-2004-10-3915] [PMID: 15626742]
[133]
Rzeski, W.; Stepulak, A.; Szymański, M.; Sifringer, M.; Kaczor, J.; Wejksza, K.; Zdzisińska, B.; Kandefer-Szerszeń, M. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn Schmiedebergs Arch. Pharmacol., 2006, 374(1), 11-20.
[http://dx.doi.org/10.1007/s00210-006-0090-1] [PMID: 16964520]
[134]
Pandey, M.K.; Sung, B.; Aggarwal, B.B. Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int. J. Cancer, 2010, 127(2), 282-292.
[http://dx.doi.org/10.1002/ijc.25059] [PMID: 19937797]
[135]
Yang, L.J.; Chen, Y.; He, J.; Yi, S.; Wen, L.; Zhao, J.; Zhang, B.P.; Cui, G.H. Betulinic acid inhibits autophagic flux and induces apoptosis in human multiple myeloma cells in vitro. Acta Pharmacol. Sin., 2012, 33(12), 1542-1548.
[http://dx.doi.org/10.1038/aps.2012.102] [PMID: 23064721]
[136]
Pandey, M.K.; Sandur, S.K.; Sung, B.; Sethi, G.; Kunnumakkara, A.B.; Aggarwal, B.B. Butein, a tetrahydroxychalcone, inhibits nuclear factor (NF)-kappaB and NF-kappaB-regulated gene expression through direct inhibition of IkappaBalpha kinase beta on cysteine 179 residue. J. Biol. Chem., 2007, 282(24), 17340-17350.
[http://dx.doi.org/10.1074/jbc.M700890200] [PMID: 17439942]
[137]
Pandey, M.K.; Sung, B.; Ahn, K.S.; Aggarwal, B.B. Butein suppresses constitutive and inducible signal transducer and activator of transcription (STAT) 3 activation and STAT3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1. Mol. Pharmacol., 2009, 75(3), 525-533.
[http://dx.doi.org/10.1124/mol.108.052548] [PMID: 19103760]
[138]
Sung, B.; Cho, S.G.; Liu, M.; Aggarwal, B.B. Butein, a tetrahydroxychalcone, suppresses cancer-induced osteoclastogenesis through inhibition of receptor activator of nuclear factor-kappaB ligand signaling. Int. J. Cancer, 2011, 129(9), 2062-2072.
[http://dx.doi.org/10.1002/ijc.25868] [PMID: 21170936]
[139]
Kashyap, D.; Mondal, R.; Tuli, H.S.; Kumar, G.; Sharma, A.K. Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumour Biol., 2016, 37(10), 12915-12925.
[http://dx.doi.org/10.1007/s13277-016-5194-8] [PMID: 27448303]
[140]
Prasad, S.; Pandey, M.K.; Yadav, V.R.; Aggarwal, B.B. Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis. Cancer Prev. Res. (Phila.), 2011, 4(7), 1084-1094.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0340] [PMID: 21490133]
[141]
Yang, L.J.; Chen, Y.; He, J.; Yi, S.; Wen, L.; Zhao, S.; Cui, G.H. Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS. Oncol. Lett., 2012, 3(5), 1159-1165.
[http://dx.doi.org/10.3892/ol.2012.634] [PMID: 22783411]
[142]
Lu, N.; Hui, H.; Yang, H.; Zhao, K.; Chen, Y.; You, Q.D.; Guo, Q.L. Gambogic acid inhibits angiogenesis through inhibiting PHD2-VHL-HIF-1α pathway. Eur. J. Pharm. Sci., 2013, 49(2), 220-226.
[http://dx.doi.org/10.1016/j.ejps.2013.02.018] [PMID: 23501055]
[143]
Costa, V.; Raimondi, L.; Conigliaro, A.; Salamanna, F.; Carina, V.; De Luca, A.; Bellavia, D.; Alessandro, R.; Fini, M.; Giavaresi, G. Hypoxia-inducible factor 1A may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P. Cytotherapy, 2017, 19(12), 1412-1425.
[http://dx.doi.org/10.1016/j.jcyt.2017.09.007] [PMID: 29111380]
[144]
Raimondi, L.; Amodio, N.; Di Martino, M.T.; Altomare, E.; Leotta, M.; Caracciolo, D.; Gullà, A.; Neri, A.; Taverna, S.; D’Aquila, P.; Alessandro, R.; Giordano, A.; Tagliaferri, P.; Tassone, P. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget, 2014, 5(10), 3039-3054.
[http://dx.doi.org/10.18632/oncotarget.1747] [PMID: 24839982]
[145]
Wang, F.; Zhang, W.; Guo, L.; Bao, W.; Jin, N.; Liu, R.; Liu, P.; Wang, Y.; Guo, Q.; Chen, B. Gambogic acid suppresses hypoxia-induced hypoxia-inducible factor-1α/vascular endothelial growth factor expression via inhibiting phosphatidylinositol 3-kinase/Akt/mammalian target protein of rapamycin pathway in multiple myeloma cells. Cancer Sci., 2014, 105(8), 1063-1070.
[http://dx.doi.org/10.1111/cas.12458] [PMID: 24890366]
[146]
Pandey, M.K.; Kale, V.P.; Song, C.; Sung, S.S.; Sharma, A.K.; Talamo, G.; Dovat, S.; Amin, S.G. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways. Exp. Hematol., 2014, 42(10), 883-896.
[http://dx.doi.org/10.1016/j.exphem.2014.07.261] [PMID: 25034231]
[147]
Holick, M.F. Vitamin D deficiency. N. Engl. J. Med., 2007, 357(3), 266-281.
[http://dx.doi.org/10.1056/NEJMra070553] [PMID: 17634462]
[148]
Bellavia, D.; Costa, V.; De Luca, A.; Maglio, M.; Pagani, S.; Fini, M.; Giavaresi, G. Vitamin D level between calcium-phosphorus homeostasis and immune system: new perspective in osteoporosis. Curr. Osteoporos. Rep., 2016.
[http://dx.doi.org/10.1007/s11914-016-0331-2] [PMID: 27734322]
[149]
Badros, A.; Goloubeva, O.; Terpos, E.; Milliron, T.; Baer, M.R.; Streeten, E. Prevalence and significance of vitamin D deficiency in multiple myeloma patients. Br. J. Haematol., 2008, 142(3), 492-494.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07214.x] [PMID: 18485049]
[150]
Park, W.H.; Seol, J.G.; Kim, E.S.; Binderup, L.; Koeffler, H.P.; Kim, B.K.; Lee, Y.Y. The induction of apoptosis by a combined 1,25(OH)2D3 analog, EB1089 and TGF-beta1 in NCI-H929 multiple myeloma cells. Int. J. Oncol., 2002, 20(3), 533-542.
[PMID: 11836565]
[151]
Calvani, N.; Cafforio, P.; Silvestris, F.; Dammacco, F. Functional osteoclast-like transformation of cultured human myeloma cell lines. Br. J. Haematol., 2005, 130(6), 926-938.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05710.x] [PMID: 16156862]
[152]
Cafforio, P.; D’Oronzo, S.; Felici, C.; Sigala, S.; Fragni, M.; Silvestris, F. 1,25(OH)2 vitamin D(3) contributes to osteoclast-like trans-differentiation of malignant plasma cells. Exp. Cell Res., 2017, 358(2), 260-268.
[http://dx.doi.org/10.1016/j.yexcr.2017.06.023] [PMID: 28669663]
[153]
Tangen, J.M.; Tierens, A.; Caers, J.; Binsfeld, M.; Olstad, O.K.; Trøseid, A.M.; Wang, J.; Tjønnfjord, G.E.; Hetland, G. Immunomodulatory effects of the Agaricus blazei Murrill-based mushroom extract AndoSan in patients with multiple myeloma undergoing high dose chemotherapy and autologous stem cell transplantation: a randomized, double blinded clinical study. BioMed Res. Int., 2015.2015718539
[http://dx.doi.org/10.1155/2015/718539] [PMID: 25664323]
[154]
Murakawa, K.; Fukunaga, K.; Tanouchi, M.; Hosokawa, M.; Hossain, Z.; Takahashi, K. Therapy of myeloma in vivo using marine phospholipid in combination with Agaricus blazei Murill as an immune respond activator. J. Oleo Sci., 2007, 56(4), 179-188.
[http://dx.doi.org/10.5650/jos.56.179] [PMID: 17898480]
[155]
Tangen, J.M.; Holien, T.; Mirlashari, M.R.; Misund, K.; Hetland, G. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™. BioMed Res. Int., 2017, 20172059825
[http://dx.doi.org/10.1155/2017/2059825] [PMID: 29238712]
[156]
Singh, T.; Vaid, M.; Katiyar, N.; Sharma, S.; Katiyar, S.K. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors. Carcinogenesis, 2011, 32(1), 86-92.
[http://dx.doi.org/10.1093/carcin/bgq215] [PMID: 20974686]
[157]
Hu, H.Y.; Li, K.P.; Wang, X.J.; Liu, Y.; Lu, Z.G.; Dong, R.H.; Guo, H.B.; Zhang, M.X. Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta Pharmacol. Sin., 2013, 34(1), 157-166.
[http://dx.doi.org/10.1038/aps.2012.161] [PMID: 23247593]
[158]
Ayati, S.H.; Fazeli, B.; Momtazi-Borojeni, A.A.; Cicero, A.F.G.; Pirro, M.; Sahebkar, A. Regulatory effects of berberine on microRNome in cancer and other conditions. Crit. Rev. Oncol. Hematol., 2017, 116, 147-158.
[http://dx.doi.org/10.1016/j.critrevonc.2017.05.008] [PMID: 28693796]
[159]
Feng, M.; Luo, X.; Gu, C.; Li, Y.; Zhu, X.; Fei, J. Systematic analysis of berberine-induced signaling pathway between miRNA clusters and mRNAs and identification of mir-99a ∼ 125b cluster function by seed-targeting inhibitors in multiple myeloma cells. RNA Biol., 2015, 12(1), 82-91.
[http://dx.doi.org/10.1080/15476286.2015.1017219] [PMID: 25826415]
[160]
Luo, X.; Gu, J.; Zhu, R.; Feng, M.; Zhu, X.; Li, Y.; Fei, J. Integrative analysis of differential miRNA and functional study of miR-21 by seed-targeting inhibition in multiple myeloma cells in response to berberine. BMC Syst. Biol., 2014, 8, 82.
[http://dx.doi.org/10.1186/1752-0509-8-82] [PMID: 25000828]
[161]
Gu, C.; Li, T.; Yin, Z.; Chen, S.; Fei, J.; Shen, J.; Zhang, Y. Integrative analysis of signaling pathways and diseases associated with the miR-106b/25 cluster and their function study in berberine-induced multiple myeloma cells. Funct. Integr. Genomics, 2017, 17(2-3), 253-262.
[http://dx.doi.org/10.1007/s10142-016-0519-7] [PMID: 27647143]
[162]
Cuendet, M.; Pezzuto, J.M. Antitumor activity of bruceantin: an old drug with new promise. J. Nat. Prod., 2004, 67(2), 269-272.
[http://dx.doi.org/10.1021/np030304+] [PMID: 14987068]
[163]
Cuendet, M.; Christov, K.; Lantvit, D.D.; Deng, Y.; Hedayat, S.; Helson, L.; McChesney, J.D.; Pezzuto, J.M. Multiple myeloma regression mediated by bruceantin. Clin. Cancer Res., 2004, 10(3), 1170-1179.
[http://dx.doi.org/10.1158/1078-0432.CCR-0362-3] [PMID: 14871997]
[164]
Issa, M.E.; Berndt, S.; Carpentier, G.; Pezzuto, J.M.; Cuendet, M. Bruceantin inhibits multiple myeloma cancer stem cell proliferation. Cancer Biol. Ther., 2016, 17(9), 966-975.
[http://dx.doi.org/10.1080/15384047.2016.1210737] [PMID: 27434731]
[165]
Issa, M.E.; Takhsha, F.S.; Chirumamilla, C.S.; Perez-Novo, C.; Vanden Berghe, W.; Cuendet, M. Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma. Clin. Epigenetics, 2017, 9, 17.
[http://dx.doi.org/10.1186/s13148-017-0319-5] [PMID: 28203307]
[166]
Yu, Q.; Chen, B.; Zhang, X.; Qian, W.; Ye, B.; Zhou, Y. Arsenic trioxide-enhanced, matrine-induced apoptosis in multiple myeloma cell lines. Planta Med., 2013, 79(9), 775-781.
[http://dx.doi.org/10.1055/s-0032-1328554] [PMID: 23700110]
[167]
Zhou, Y.H.; Feng, J.Y.; You, L.S.; Meng, H.T.; Qian, W.B. Matrine and CYC116 synergistically inhibit growth and induce apoptosis in multiple myeloma cells. Chin. J. Integr. Med., 2015, 21(8), 635-639.
[http://dx.doi.org/10.1007/s11655-015-1975-y] [PMID: 25804197]
[168]
Rao, P.S.; Prasad, M.N. Strychnos nux-vomica root extract induces apoptosis in the human multiple myeloma cell line-U266B1. Cell Biochem. Biophys., 2013, 66(3), 443-450.
[http://dx.doi.org/10.1007/s12013-012-9492-5] [PMID: 23250582]
[169]
Rao, P.S.; Ramanadham, M.; Prasad, M.N. Anti-proliferative and cytotoxic effects of Strychnos nux-vomica root extract on human multiple myeloma cell line - RPMI 8226. Food Chem. Toxicol., 2009, 47(2), 283-288.
[http://dx.doi.org/10.1016/j.fct.2008.10.027] [PMID: 19027818]
[170]
Tibullo, D.; Caporarello, N.; Giallongo, C.; Anfuso, C.D.; Genovese, C.; Arlotta, C.; Puglisi, F.; Parrinello, N.L.; Bramanti, V.; Romano, A.; Lupo, G.; Toscano, V.; Avola, R.; Brundo, M.V.; Di Raimondo, F.; Raccuia, S.A. Antiproliferative and antiangiogenic effects of punica granatum juice (PGJ) in Multiple Myeloma (MM). Nutrients, 2016, 8(10)E611
[http://dx.doi.org/10.3390/nu8100611] [PMID: 27706074]
[171]
Kiraz, Y.; Neergheen-Bhujun, V.S.; Rummun, N.; Baran, Y. Apoptotic effects of non-edible parts of Punica granatum on human multiple myeloma cells. Tumour Biol., 2016, 37(2), 1803-1815.
[http://dx.doi.org/10.1007/s13277-015-3962-5] [PMID: 26318303]
[172]
Fu, R.; Chen, Y.; Wang, X.P.; An, T.; Tao, L.; Zhou, Y.X.; Huang, Y.J.; Chen, B.A.; Li, Z.Y.; You, Q.D.; Guo, Q.L.; Wu, Z.Q. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis. Oncotarget, 2016, 7(5), 5715-5727.
[http://dx.doi.org/10.18632/oncotarget.6796] [PMID: 26735336]
[173]
Lin, M.G.; Liu, L.P.; Li, C.Y.; Zhang, M.; Chen, Y.; Qin, J.; Gu, Y.Y.; Li, Z.; Wu, X.L.; Mo, S.L. Scutellaria extract decreases the proportion of side population cells in a myeloma cell line by down-regulating the expression of ABCG2 protein. Asian Pac. J. Cancer Prev., 2013, 14(12), 7179-7186.
[http://dx.doi.org/10.7314/APJCP.2013.14.12.7179] [PMID: 24460272]
[174]
Zhang, M.; Liu, L.P.; Chen, Y.; Tian, X.Y.; Qin, J.; Wang, D.; Li, Z.; Mo, S.L. Wogonin induces apoptosis in RPMI 8226, a human myeloma cell line, by downregulating phospho-Akt and overexpressing Bax. Life Sci., 2013, 92(1), 55-62.
[http://dx.doi.org/10.1016/j.lfs.2012.10.023] [PMID: 23142241]
[175]
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J Nutr, 2000, 130(8S Suppl), 2073S-85S.
[http://dx.doi.org/10.1093/jn/130.8.2073S]
[176]
Angelone, T.; Pasqua, T.; Di Majo, D.; Quintieri, A.M.; Filice, E.; Amodio, N.; Tota, B.; Giammanco, M.; Cerra, M.C. Distinct signalling mechanisms are involved in the dissimilar myocardial and coronary effects elicited by quercetin and myricetin, two red wine flavonols. Nutr. Metab. Cardiovasc. Dis., 2011, 21(5), 362-371.
[http://dx.doi.org/10.1016/j.numecd.2009.10.011] [PMID: 20096547]
[177]
Lee, J.H.; Chiang, S.Y.; Nam, D.; Chung, W.S.; Lee, J.; Na, Y.S.; Sethi, G.; Ahn, K.S. Capillarisin inhibits constitutive and inducible STAT3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases. Cancer Lett., 2014, 345(1), 140-148.
[http://dx.doi.org/10.1016/j.canlet.2013.12.008] [PMID: 24333736]
[178]
Kim, S.M.; Lee, J.H.; Sethi, G.; Kim, C.; Baek, S.H.; Nam, D.; Chung, W.S.; Kim, S.H.; Shim, B.S.; Ahn, K.S. Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells. Cancer Lett., 2014, 354(1), 153-163.
[http://dx.doi.org/10.1016/j.canlet.2014.08.002] [PMID: 25130169]
[179]
Kunnumakkara, A.B.; Nair, A.S.; Sung, B.; Pandey, M.K.; Aggarwal, B.B. Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol. Cancer Res., 2009, 7(1), 118-128.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0154] [PMID: 19147543]
[180]
Park, S.; Lee, H.J.; Jeong, S.J.; Song, H.S.; Kim, M.; Lee, H.J.; Lee, E.O.; Kim, D.H.; Ahn, K.S.; Kim, S.H. Inhibition of JAK1/STAT3 signaling mediates compound K-induced apoptosis in human multiple myeloma U266 cells. Food Chem. Toxicol., 2011, 49(6), 1367-1372.
[http://dx.doi.org/10.1016/j.fct.2011.03.021] [PMID: 21420464]
[181]
Sun, X.; Liao, W.; Wang, J.; Wang, P.; Gao, H.; Wang, M.; Xu, C.; Zhong, Y.; Ding, Y. CSTMP induces apoptosis and mitochondrial dysfunction in human myeloma RPMI8226 cells via CHOP-dependent endoplasmic reticulum stress. Biomed. Pharmacother., 2016, 83, 776-784.
[http://dx.doi.org/10.1016/j.biopha.2016.07.045] [PMID: 27490778]
[182]
Muto, A.; Hori, M.; Sasaki, Y.; Saitoh, A.; Yasuda, I.; Maekawa, T.; Uchida, T.; Asakura, K.; Nakazato, T.; Kaneda, T.; Kizaki, M.; Ikeda, Y.; Yoshida, T. Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol. Cancer Ther., 2007, 6(3), 987-994.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0605] [PMID: 17363492]
[183]
Lee, J.C.; Ahn, K.S.; Jeong, S.J.; Jung, J.H.; Kwon, T.R.; Rhee, Y.H.; Kim, S.H.; Kim, S.Y.; Yoon, H.J.; Zhu, S.; Chen, C.Y.; Kim, S.H. Signal transducer and activator of transcription 3 pathway mediates genipin-induced apoptosis in U266 multiple myeloma cells. J. Cell. Biochem., 2011, 112(6), 1552-1562.
[http://dx.doi.org/10.1002/jcb.23077] [PMID: 21344490]
[184]
Terpos, E.; Berenson, J.; Raje, N.; Roodman, G.D. Management of bone disease in multiple myeloma. Expert Rev. Hematol., 2014, 7(1), 113-125.
[http://dx.doi.org/10.1586/17474086.2013.874943] [PMID: 24433088]
[185]
Berenson, J.R. Therapeutic options in the management of myeloma bone disease. Semin. Oncol., 2010, 37(Suppl. 1), S20-S29.
[http://dx.doi.org/10.1053/j.seminoncol.2010.06.009] [PMID: 20682368]
[186]
Coluzzi, F.; Di Bussolo, E.; Mandatori, I.; Mattia, C. Bone metastatic disease: taking aim at new therapeutic targets. Curr. Med. Chem., 2011, 18(20), 3093-3115.
[http://dx.doi.org/10.2174/092986711796391660] [PMID: 21651483]
[187]
Coluzzi, F.; Raffa, R.B.; Pergolizzi, J.; Rocco, A.; Locarini, P.; Cenfra, N.; Cimino, G.; Mattia, C. Tapentadol prolonged release for patients with multiple myeloma suffering from moderate-to-severe cancer pain due to bone disease. J. Pain Res., 2015, 8, 229-238.
[http://dx.doi.org/10.2147/JPR.S83490] [PMID: 26064064]
[188]
Coluzzi, F.; Berti, M. Change Pain: changing the approach to chronic pain. Minerva Med., 2011, 102(4), 289-307.
[PMID: 21959703]
[189]
Müller-Schwefe, G.; Ahlbeck, K.; Aldington, D.; Alon, E.; Coaccioli, S.; Coluzzi, F.; Huygen, F.; Jaksch, W.; Kalso, E.; Kocot-Kępska, M.; Kress, H.G.; Mangas, A.C.; Ferri, C.M.; Morlion, B.; Nicolaou, A.; Hernández, C.P.; Pergolizzi, J.; Schäfer, M.; Sichère, P. Pain in the cancer patient: different pain characteristics CHANGE pharmacological treatment requirements. Curr. Med. Res. Opin., 2014, 30(9), 1895-1908.
[http://dx.doi.org/10.1185/03007995.2014.925439] [PMID: 24841174]
[190]
Zhou, Z.W.; Zhou, S.F. Editorial for Special Issue on Herbal Medicines and Natural Products. Medicines (Basel), 2015, 2(4), 328-330.
[http://dx.doi.org/10.3390/medicines2040328] [PMID: 28930214]
[191]
Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: from ancient medicine to current clinical trials. Cell. Mol. Life Sci., 2008, 65(11), 1631-1652.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[192]
Sharma, S.; Chopra, K.; Kulkarni, S.K. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother. Res., 2007, 21(3), 278-283.
[http://dx.doi.org/10.1002/ptr.2070] [PMID: 17199240]
[193]
Mittal, N.; Joshi, R.; Hota, D.; Chakrabarti, A. Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat. Phytother. Res., 2009, 23(4), 507-512.
[http://dx.doi.org/10.1002/ptr.2662] [PMID: 19051211]
[194]
El Nebrisi, E.G.; Bagdas, D.; Toma, W.; Al Samri, H.; Brodzik, A.; Alkhlaif, Y.; Yang, K.S.; Howarth, F.C.; Damaj, I.M.; Oz, M. Curcumin acts as a positive allosteric modulator of α7-nicotinic acetylcholine receptors and reverses nociception in mouse models of inflammatory pain. J. Pharmacol. Exp. Ther., 2018, 365(1), 190-200.
[http://dx.doi.org/10.1124/jpet.117.245068] [PMID: 29339457]
[195]
Matsushita, Y.; Ueda, H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport, 2009, 20(1), 63-68.
[http://dx.doi.org/10.1097/WNR.0b013e328314decb] [PMID: 19033880]
[196]
Liang, D.Y.; Li, X.; Clark, J.D. Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J. Pain, 2013, 14(1), 36-47.
[http://dx.doi.org/10.1016/j.jpain.2012.10.005] [PMID: 23273833]
[197]
Liu, H.L.; Chen, Y.; Cui, G.H.; Zhou, J.F. Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol. Sin., 2005, 26(5), 603-609.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00081.x] [PMID: 15842781]
[198]
Chen, Y.; Shu, W.; Chen, W.; Wu, Q.; Liu, H.; Cui, G. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin. Pharmacol. Toxicol., 2007, 101(6), 427-433.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00142.x] [PMID: 17927689]
[199]
Abdel-Zaher, A.O.; Abdel-Rahman, M.S.; Elwasei, F.M. Protective effect of Nigella sativa oil against tramadol-induced tolerance and dependence in mice: role of nitric oxide and oxidative stress. Neurotoxicology, 2011, 32(6), 725-733.
[http://dx.doi.org/10.1016/j.neuro.2011.08.001] [PMID: 21855572]
[200]
Abdel-Zaher, A.O.; Abdel-Rahman, M.S. ELwasei, F.M. Blockade of nitric oxide overproduction and oxidative stress by Nigella sativa oil attenuates morphine-induced tolerance and dependence in mice. Neurochem. Res., 2010, 35(10), 1557-1565.
[http://dx.doi.org/10.1007/s11064-010-0215-2] [PMID: 20552271]
[201]
Tabatabai, S.M.; Dashti, S.; Doosti, F.; Hosseinzadeh, H. Phytotherapy of opioid dependence and withdrawal syndrome: a review. Phytother. Res., 2014, 28(6), 811-830.
[http://dx.doi.org/10.1002/ptr.5073] [PMID: 24151030]
[202]
Amin, B.; Hosseinzadeh, H. Black cumin (nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med., 2016, 82(1-2), 8-16.
[PMID: 26366755]
[203]
Majdalawieh, A.F.; Fayyad, M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int. Immunopharmacol., 2015, 28(1), 295-304.
[http://dx.doi.org/10.1016/j.intimp.2015.06.023] [PMID: 26117430]
[204]
Usta, C.; Ozdemir, S.; Schiariti, M.; Puddu, P.E. The pharmacological use of ellagic acid-rich pomegranate fruit. Int. J. Food Sci. Nutr., 2013, 64(7), 907-913.
[http://dx.doi.org/10.3109/09637486.2013.798268] [PMID: 23700985]
[205]
BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med., 2017, 17(1), 47.
[http://dx.doi.org/10.1186/s12906-017-1555-0] [PMID: 28088220]
[206]
Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B. Ellagic acid enhances morphine analgesia and attenuates the development of morphine tolerance and dependence in mice. Eur. J. Pharmacol., 2014, 741, 272-280.
[http://dx.doi.org/10.1016/j.ejphar.2014.08.024] [PMID: 25179576]
[207]
Taghi Mansouri, M.; Naghizadeh, B.; Ghorbanzadeh, B.; Farbood, Y. Central and peripheral antinociceptive effects of ellagic acid in different animal models of pain. Eur. J. Pharmacol., 2013, 707(1-3), 46-53.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.031] [PMID: 23528359]
[208]
Zhu, H.; Ding, J.; Wu, J.; Liu, T.; Liang, J.; Tang, Q.; Jiao, M. Resveratrol attenuates bone cancer pain through regulating the expression levels of ASIC3 and activating cell autophagy. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(11), 1008-1014.
[http://dx.doi.org/10.1093/abbs/gmx103] [PMID: 29036449]
[209]
Wang, W.; Yu, Y.; Li, J.; Wang, L.; Li, Z.; Zhang, C.; Zhen, L.; Ding, L.; Wang, G.; Sun, X.; Xu, Y. The analgesic effect of trans-resveratrol is regulated by calcium channels in the hippocampus of mice. Metab. Brain Dis., 2017, 32(4), 1311-1321.
[http://dx.doi.org/10.1007/s11011-017-0033-1] [PMID: 28608248]
[210]
Takehana, S.; Kubota, Y.; Uotsu, N.; Yui, K.; Iwata, K.; Shimazu, Y.; Takeda, M. The dietary constituent resveratrol suppresses nociceptive neurotransmission via the NMDA receptor. Mol. Pain, 2017, 131744806917697010
[http://dx.doi.org/10.1177/1744806917697010] [PMID: 28326937]
[211]
Takeda, M.; Takehana, S.; Sekiguchi, K.; Kubota, Y.; Shimazu, Y. Modulatory mechanism of nociceptive neuronal activity by dietary constituent resveratrol. Int. J. Mol. Sci., 2016, 17(10)E1702
[http://dx.doi.org/10.3390/ijms17101702] [PMID: 27727178]
[212]
Tsai, R.Y.; Wang, J.C.; Chou, K.Y.; Wong, C.S.; Cherng, C.H. Resveratrol reverses morphine-induced neuroinflammation in morphine-tolerant rats by reversal HDAC1 expression. J. Formos. Med. Assoc., 2016, 115(6), 445-454.
[http://dx.doi.org/10.1016/j.jfma.2015.05.010] [PMID: 26078221]
[213]
Pérez-Severiano, F.; Bermúdez-Ocaña, D.Y.; López-Sánchez, P.; Ríos, C.; Granados-Soto, V. Spinal nerve ligation reduces nitric oxide synthase activity and expression: effect of resveratrol. Pharmacol. Biochem. Behav., 2008, 90(4), 742-747.
[http://dx.doi.org/10.1016/j.pbb.2008.05.024] [PMID: 18582495]
[214]
Silva, A.M.; Oliveira, M.I.; Sette, L.; Almeida, C.R.; Oliveira, M.J.; Barbosa, M.A.; Santos, S.G. Resveratrol as a natural anti-tumor necrosis factor-α molecule: implications to dendritic cells and their crosstalk with mesenchymal stromal cells. PLoS One, 2014, 9(3)e91406
[http://dx.doi.org/10.1371/journal.pone.0091406] [PMID: 24614867]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy