Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Catalyst Free and Energy Economical Synthesis of Thiazole Derivatives Bearing Azo Imine Linkage with Imidazole as Antimicrobial Agents

Author(s): Nayan M. Panchani and Hitendra S. Joshi*

Volume 16, Issue 3, 2019

Page: [284 - 290] Pages: 7

DOI: 10.2174/1570180815666180627155443

Price: $65

Abstract

Background: Several strategies have been reported for the synthesis of thiazole derivatives.

Methods: However, many of these methods suffer from several drawbacks. Several modifications have been made to counter these problems. Here, we have synthesized a new series of 2-(2-((1HImidazol- 4-yl)methylene)hydrazinyl)-4-(4-substitutedphenyl)thiazoles without using the catalyst at room temperature.

Results: The structures of synthesized compounds have been confirmed by spectral analysis, such as Mass, IR, 1H NMR and 13C NMR. All synthesized compounds were screened for in vitro antibacterial activity against some gram-positive and gram-negative bacteria.

Conclusion: The thiazole derivatives, with a pharmacologically potent group, discussed in this article may provide valued therapeutic important in the treatment of microbial diseases, especially against bacterial and fungal infections.

Keywords: Thiazole, imidazole, thiosemicarbazide, catalyst, phenacyl bromide, methanol.

Graphical Abstract

[1]
Quiroga, J.; Hernandez, P.; Insuassty, B.R.; Abonia, R.; Cobo, J.; Sanchez, A.; Nogueras, M.; Low, J.N. Control of the reaction between 2-aminobenzothiazoles and Mannich bases. Synthesis of pyrido[2,1-b][1,3]benzothiazoles versus [1,3]benzothiazolo[2,3-b]quinazolines. J. Chem. Soc., Perkin Trans., 2002, 1, 555-559.
[2]
Hutchinson, I.; Jennings, S.A.; Vishnuvajjala, B.R.; Westwell, A.D.; Stevens, M.F.G. Antitumor benzothiazoles. Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl) benzothiazole amino acid prodrugs. J. Med. Chem., 2002, 45, 744-747.
[3]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T. N-(4-Substituted-thiazolyl) oxamic acid derivatives, new series of potent, orally active anti- allergy agents. J. Med. Chem., 1983, 26, 1158-1163.
[4]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G.; Connolly, C.J.C.; Doherty, A.M.; Klutchko, S.R. Sircar, Steinbaugh, B.A.; Batley, B.L.; Painchaud, C.A.; Rapundalo, S.T.; Michniewicz, B.M.; Olson, S.C. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J.of Med. Chem., 1992, 35, 2562-2572.
[5]
Shivarama, H.B.; Malini, K.V.; Rao, B.S.; Sarojini, B.K.; Suchetha, K.N. Synthesis of some new 2,4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2003, 38, 313-318.
[6]
Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, B.W.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzner, L.T.; Pugsley, T.A. 4-(1,2,5,6-tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: A novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33, 311-317.
[7]
Tsuji, K.; Ishikawa, H. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7. Bioorg. Med. Chem. Lett., 1994, 4, 1601-1606.
[8]
Vicini, P.; Geronokaki, A.; Incerti, M.; Busonera, B. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11, 4785-4789.
[9]
Fathalla, W. Syntheses and reactions of methyl[3-(4-phenyl-thiazol-2-yl)-thioureido] alkanoates and related compounds. ARKIVOC, 2008, 12, 245-255.
[10]
Bell, F.W.; Cantrell, A.S.; Hogberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordon, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M.; Noreen, R.; Oberg, B.; Palkowitz, J.A.; Parrish, C.A.; Pranc, P.; Sahlberg, C.; Ternansky, R.J.; Vasileff, R.T.; Vrang, L.; West, S.J.; Zhang, H.; Zhou, X.X. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem., 1995, 38, 4929-4936.
[11]
Ergenc, N.; Capan, G.; Gunay, N.S.; Ozkirimli, S.; Gungor, M.; Ozbey, S.; Kendi, E. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch. Pharm. Pharm. Med. Chem., 1999, 332, 343-347.
[12]
Carter, J.S.; Kramer, S.; Talley, J.J.; Xpenning, J.J.; Collins, P.; Graneto, M.J.; Seibert, K.; Koboldt, C.; Masferrer, J.; Zweifel, B. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 1999, 9, 1171-1174.
[13]
Badorc, A.; Bordes, M.F.; De Cointet, P.; Savi, P.; Bernat, A.; Lale, A.; Petitou, M.; Maffrand, J.P.; Herbert, J.M. New orally active non-peptide fibrinogen receptor (GpIIb-IIIa) antagonists: Identification of ethyl 3-[N-[4-[4-[amino[(ethoxycarbonyl) imino]methyl] phenyl]-1,3-thiazol-2-yl]-N-[1-[(ethoxycarbonyl)methyl]piperid-4-yl]amino] propionate (SR 121787) as a potent and long-acting antithrombotic agent. J. Med. Chem., 1997, 40, 3393-3401.
[14]
Rudolph, J.; Theis, H.; Hanke, R.; Endermann, R.; Johannsen, L.; Geschke, F.U. seco-Cyclothialidines: New concise synthesis, inhibitory activity toward bacterial and human dna topoisomerases, and antibacterial properties. J. Med. Chem., 2001, 44, 619-626.
[15]
Bonila, P.M.; Cardena, A.P.; Tellez, J.L.A.; Rejon, G.J.M. Preparation, antimicrobial activity, and toxicity of 2-amino-4-arylthiazole derivatives. Heteroatom Chem., 2006, 17, 254-260.
[16]
Parmar, K.A.; Suthar, B.G.; Prajapati, S. Synthesis and antibacterial evaluation of some novel 2-arylamino-4-phenyl-thiazolyl derivatives. Bull. Korean Chem. Soc., 2010, 31, 793-797.
[17]
Prajapati, A.K.; Modi, V.P. Synthesis and biological evaluation of some substituted amino thiazole derivatives. J. Chil. Chem. Soc., 2010, 55, 240-243.
[18]
Desai, N.C.; Bhatt, N.B.; Somani, H.C.; Trivedi, A.R. Synthesis, antimicrobial and cytotoxic activities of some novel thiazole clubbed 1,3,4-oxadiazoles. Eur. J. Med. Chem., 2013, 67, 54-59.
[19]
Idhayadhulla, A.; Kumar, R.S.; Nasser, A.J.A. Synthesis, characterization and antimicrobial activity of new pyrrole derivatives. J. Mexican . Chem. Soc., 2011, 55, 218-223.
[20]
Satoh, A.; Nagatomi, Y.; Hirata, Y.; Ito, S.; Suzuki, G.; Kimura, T.; Maehara, S.; Hikichi, H.; Satow, A.; Hata, M.; Ohta, H.; Kawamoto, H. Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg. Med. Chem., 2009, 19, 5464-5468.
[21]
Akbari, J.D.; Mehta, K.B.; Pathak, S.J.; Joshi, H.S. Synthesis and antimicrobial activity of some new pyrazolo[3,4-d]pyrimidines and thiazolo[4,5-d]pyrimidines. Ind J. Chem., 2008, 47B, 477-480.
[22]
Akbari, J.D.; Kachhadia, P.K.; Tala, S.D.; Bapodra, A.H.; Dhaduk, M.F.; Mehta, K.B.; Pathak, S.J.; Joshi, H.S. Synthesis of some new pyrazolo[3,4-d]pyrimidines and thiazolo [4,5-d]pyrimidines and evaluation of their antimicrobial activities. Phosphrus Sulfur Silicon Rel. Elem., 2008, 183, 1471-1477.
[23]
Sanfilippo, P.J.; Jetter, M.C.; Cordova, R.; Noe, R.A. Novel thiazole based heterocycles as inhibitors of LFA-1/ICAM-1 mediated cell adhesion. J. Med. Chem., 1995, 38, 1057-1059.
[24]
Saravanan, G.; Alagarsamy, V.; Prakash, C.R. Synthesis of novel thiazole derivatives as analgesic agents. Asian J. Res. Pharm. Sci., 2011, 1, 134-138.
[25]
Siddiqui, N.; Ashan, W. Triazole incorporated thiazoles as a new class of anticonvulsants: Design, synthesis and in vivo screening. Eur. J. Med. Chem., 2010, 45, 1536-1543.
[26]
Gupta, V.; Kant, V. A review on biological activity of imidazole and thiazole moieties and their derivatives. Sci. International., 2013, 1, 253-260.
[27]
Geronikaki, A.; Litina, D.H.; Chatziopoulos, C.; Soloupis, G. Synthesis and biological evaluation of new 4,5-disubstituted-thiazolyl amides, derivatives of 4-hydroxy-piperidine or of 4-N-methyl piperazine. Molecules, 2003, 8, 472-479.
[28]
Mokale, S.N.; Sanap, P.T.; Shinde, D.B. Synthesis and hypolipidemic activity of novel 2-(4-(2-substituted aminothiazole-4-yl) phenoxy) acetic acid derivatives. Eur. J. Med. Chem., 2010, 45, 3096-3100.
[29]
Bhattacharya, P.; Leonard, J.T.; Roy, K. Exploring QSAR of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists using FA and GFA techniques. Bioorg. Med. Chem., 2005, 13, 1159-1165.
[30]
Scheiff, A.B.; Yerande, S.G.; El Tayeb, A. 2-Amino-5-benzoyl-4-phenylthiazoles: Development of potent and selective adenosine A1 receptor antagonists. Bioorg. Med. Chem., 2010, 18, 2195-2203.
[31]
Sperry, J.B.; Wright, D.L. Furans, thiophenes and related heterocycles in drug discovery. Curr. Opin. Drug Discovery Dev., 2005, 8, 723-740.
[32]
Breslow, R. On the mechanism of thiamine action. IV.1 evidence from studies on model systems. J. Am. Chem. Soc., 1958, 80, 3719-3726.
[33]
Fosbinder, W. Sulfanilamido derivatives of heterocyclic amines. J. Am. Chem. Soc., 1939, 61, 2032-2033.
[34]
Tsuruoka, A.; Kaku, Y.Y.; Kakinumato, H.; Tsukada, I.; Yanagishawa, M.; Naito, T. Synthesis and antifungal activity of novel thiazole-containing triazole antifungals. J. Chem. Pharm. Bull., 1997, 45, 1169-1176.
[35]
Schwarz, G. 2,4-Dimethylthiazole. Org. Synth., 1945, 3, 332-333.
[36]
Alajarín, M.; Cabrera, J.; Pastor, A.; Sanchez-Andrada, P.; Bautista, D. On the [2+2] cycloaddition of 2-aminothiazoles and dimethyl acetylenedicarboxylate, experimental and computational evidence of a thermal disrotatory ring opening of fused cyclobutenes. J. Org. Chem., 2006, 71, 5328-5339.
[37]
Sheldrake, P.W.; Matteucci, Mc. D.M.E. Facile generation of a library of 5-aryl-2-arylsulfonyl-1,3-thiazoles. Synlett, 2006, 3, 460-462.
[38]
Potewar, T.M.; Ingale, S.A.; Kumar, V.S. Efficient synthesis of 2,4-disubstituted thiazoles using ionic liquid under ambient conditions: a practical approach towards the synthesis of Fanetizole. Tetrahedron, 2007, 63, 11066-11069.
[39]
Karade, H.; Sathe, M.; Kaushik, M.P. An efficient method for the synthesis of 2-aminothiazoles using silica chloride as a heterogeneous catalyst. Catal. Commun., 2007, 8, 741-746.
[40]
Narender, M.; Reddy, S.M.; Sridhar, R.; Nageswar, Y.V. Aqueous phase synthesis of thiazoles and aminothiazoles in the presence of β-cyclodextrin. Tetrahedron Lett., 2005, 46, 5953-5955.
[41]
Das, B.; Reddy, S.V.; Ramu, R. A rapid and high-yielding synthesis of thiazoles and aminothiazoles using ammonium-12-molybdophosphate. J. Mol. Catal. A. Chem., 2006, 252, 235-237.
[42]
Amrita, A.; Senthilkumar, G.P. Synthesis and biological evaluation of some new substituted thiazole analogues. Der Pharma Chemica., 2011, 3, 523-525.
[43]
Zgoda, J.R.; Porter, J.R. Aconvenient microdilution method for screening natural products against bacteria and fungi. Pharm. Biol., 2001, 39, 221-225.

© 2025 Bentham Science Publishers | Privacy Policy