[1]
Dobson, C.M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol., 2004, 15(1), 3-16.
[2]
Zolkiewski, M.; Zhang, T.; Nagy, M. Aggregate reactivation mediated by the Hsp100 chaperones. Arch. Biochem. Biophys., 2012, 520(1), 1-6.
[3]
Scior, A.; Juenemann, K.; Kirstein, J. Cellular strategies to cope with protein aggregation. Essays Biochem., 2016, 60(2), 153-161.
[4]
Batista, F.A.; Gava, L.M.; Pinheiro, G.M.; Ramos, C.H.; Borges, J.C. From conformation to interaction: Techniques to explore the Hsp70/Hsp90 Network. Curr. Protein Pept. Sci., 2015, 16(8), 735-753.
[5]
Borges, J.C.; Ramos, C.H. Protein folding assisted by chaperones. Protein Pept. Lett., 2005, 12(3), 257-261.
[6]
Jaenicke, R.; Seckler, R. Seckler, R. Spontaneous versus assisted protein folding.
In In: Molecular Chaperones and Folding Catalysts Regulation,
Cellular Function and Mechanism,; Bukau, B., Ed. Amsterdam:
Harwood Academic Publishers,. , 1999.
[7]
Jaenicke, R. Folding and association of proteins. Prog. Biophys. Mol. Biol., 1987, 49(2-3), 117-237.
[8]
Mogk, A.; Haslberger, T.; Tessarz, P.; Bukau, B. Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem. Soc. Trans., 2008, 36(Pt 1), 120-125.
[9]
Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol., 2013, 14(10), 630-642.
[10]
Hartl, F.U.; Hayer-Hartl, M. Protein folding - molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 2002, 295(5561), 1852-1858.
[11]
Mokry, D.Z.; Abrahão, J.; Ramos, C.H. Disaggregases, molecular chaperones that resolubilize protein aggregates. An. Acad. Bras. Cienc., 2015, 87(2)(Suppl.), 1273-1292.
[12]
Shorter, J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One, 2011, 6(10), e26319.
[13]
Nillegoda, N.B.; Kirstein, J.; Szlachcic, A.; Berynskyy, M.; Stank, A.; Stengel, F.; Arnsburg, K.; Gao, X.; Scior, A.; Aebersold, R.; Guilbride, D.L.; Wade, R.C.; Morimoto, R.I.; Mayer, M.P.; Bukau, B. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature, 2015, 524(7564), 247-251.
[14]
Mogk, A.; Kummer, E.; Bukau, B. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front. Mol. Biosci., 2015, 2, 22.
[15]
Rampelt, H.; Kirstein-Miles, J.; Nillegoda, N.B.; Chi, K.; Scholz, S.R.; Morimoto, R.I.; Bukau, B. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J., 2012, 31(21), 4221-4235.
[16]
Żwirowski, S.; Kłosowska, A.; Obuchowski, I.; Nillegoda, N.B.; Piróg, A.; Ziętkiewicz, S.; Bukau, B.; Mogk, A.; Liberek, K. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. EMBO J., 2017, 36(6), 783-796.
[17]
Schaupp, A.; Marcinowski, M.; Grimminger, V.; Bösl, B.; Walter, S. Processing of proteins by the molecular chaperone Hsp104. J. Mol. Biol., 2007, 370(4), 674-686.
[18]
Schirmer, E.C.; Glover, J.R.; Singer, M.A.; Lindquist, S. HSP100/Clp proteins: A common mechanism explains diverse functions. Trends Biochem. Sci., 1996, 21(8), 289-296.
[19]
Shorter, J. Engineering therapeutic protein disaggregases. Mol. Biol. Cell, 2016, 27(10), 1556-1560.
[20]
Sweeny, E.A.; Shorter, J. Mechanistic and structural insights into the prion-disaggregase activity of Hsp104. J. Mol. Biol., 2016, 428(9 Pt B), 1870-1885.
[21]
de Marco, A.; Deuerling, E.; Mogk, A.; Tomoyasu, T.; Bukau, B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol., 2007, 7(1), 32.
[22]
Haslberger, T.; Bukau, B.; Mogk, A. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem. Cell Biol., 2010, 88(1), 63-75.
[23]
Lipińska, N.; Ziętkiewicz, S.; Sobczak, A.; Jurczyk, A.; Potocki, W.; Morawiec, E.; Wawrzycka, A.; Gumowski, K.; Ślusarz, M.; Rodziewicz-Motowidło, S.; Chruściel, E.; Liberek, K. Disruption of ionic interactions between the Nucleotide Binding Domain 1 (NBD1) and Middle (M) domain in Hsp100 disaggregase unleashes toxic hyperactivity and partial independence from Hsp70. J. Biol. Chem., 2013, 288(4), 2857-2869.
[24]
Lee, S.; Sowa, M.E.; Watanabe, Y.H.; Sigler, P.B.; Chiu, W.; Yoshida, M.; Tsai, F.T. The structure of ClpB: A molecular chaperone that rescues proteins from an aggregated state. Cell, 2003, 115(2), 229-240.
[25]
Hanson, P.I.; Whiteheart, S.W. AAA+ proteins: Have engine, will work. Nat. Rev. Mol. Cell Biol., 2005, 6(7), 519-529.
[26]
Kitagawa, M.; Wada, C.; Yoshioka, S.; Yura, T. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32). J. Bacteriol., 1991, 173(14), 4247-4253.
[27]
Woo, K.M.; Kim, K.I.; Goldberg, A.L.; Ha, D.B.; Chung, C.H. The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. J. Biol. Chem., 1992, 267(28), 20429-20434.
[28]
Squires, C.L.; Pedersen, S.; Ross, B.M.; Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol., 1991, 173(14), 4254-4262.
[29]
Sanchez, Y.; Lindquist, S.L. HSP104 required for induced thermotolerance. Science, 1990, 248(4959), 1112-1115.
[30]
Parsell, D.A.; Sanchez, Y.; Stitzel, J.D.; Lindquist, S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature, 1991, 353(6341), 270-273.
[31]
Lee, Y.R.; Nagao, R.T.; Key, J.L. A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell, 1994, 6(12), 1889-1897.
[32]
Singh, A.; Singh, U.; Mittal, D.; Grover, A. Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genom., 2010, 11, 95.
[33]
Cagliari, T.C.; da Silva, V.C.; Borges, J.C.; Prando, A.; Tasic, L.; Ramos, C.H. Sugarcane Hsp101 is a hexameric chaperone that binds nucleotides. Int. J. Biol. Macromol., 2011, 49(5), 1022-1030.
[34]
Zolkiewski, M.; Kessel, M.; Ginsburg, A.; Maurizi, M.R. Nucleotide-dependent oligomerization of ClpB from Escherichia coli. Protein Sci., 1999, 8(9), 1899-1903.
[35]
Lin, J.; Lucius, A.L. Examination of the dynamic assembly equilibrium for E. coli ClpB. Proteins, 2015, 83(11), 2008-2024.
[36]
Parsell, D.A.; Kowal, A.S.; Lindquist, S. Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. J. Biol. Chem., 1994, 269(6), 4480-4487.
[37]
Aguado, A.; Fernández-Higuero, J.A.; Moro, F.; Muga, A. Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem. Arch. Biochem. Biophys., 2015, 580, 121-134.
[38]
Rosenzweig, R.; Farber, P.; Velyvis, A.; Rennella, E.; Latham, M.P.; Kay, L.E.; Clp, B. N-terminal domain plays a regulatory role in protein disaggregation. Proc. Natl. Acad. Sci. USA, 2015, 112(50), E6872-E6881.
[39]
Lee, J.; Kim, J.H.; Biter, A.B.; Sielaff, B.; Lee, S.; Tsai, F.T. Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor. Proc. Natl. Acad. Sci. USA, 2013, 110(21), 8513-8518.
[40]
Glover, J.R.; Lindquist, S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell, 1998, 94(1), 73-82.
[41]
Mogk, A.; Tomoyasu, T.; Goloubinoff, P.; Rüdiger, S.; Röder, D.; Langen, H.; Bukau, B. Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J., 1999, 18(24), 6934-6949.
[42]
Goloubinoff, P.; Mogk, A.; Zvi, A.P.; Tomoyasu, T.; Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA, 1999, 96(24), 13732-13737.
[43]
Reidy, M.; Miot, M.; Masison, D.C. Prokaryotic chaperones support yeast prions and thermotolerance and define disaggregation machinery interactions. Genetics, 2012, 192(1), 185-193.
[44]
Yuan, A.H.; Garrity, S.J.; Nako, E.; Hochschild, A. Prion propagation can occur in a prokaryote and requires the ClpB chaperone. eLife, 2014, 3, e02949.
[45]
Mishra, R.C.; Grover, A. ClpB/Hsp100 proteins and heat stress tolerance in plants. Crit. Rev. Biotech., 2015, 1549-7801.
[46]
Hodson, S.; Marshall, J.J.; Burston, S.G. Mapping the road to recovery: The ClpB/Hsp104 molecular chaperone. J. Struct. Biol., 2012, 179(2), 161-171.
[48]
Singh, A.; Grover, A. Plant Hsp100/ClpB-like proteins: Poorly-analyzed cousins of yeast ClpB machine. Plant Mol. Biol., 2010, 74(4-5), 395-404.
[49]
Seraphim, T.V.; Ramos, C.H.I.; Borges, J.C. The interaction networks of Hsp70 and Hsp90 in the Plasmodium and Leishmania parasites.In The molecular chaperones interaction networks in protein folding and degradation; Houry, W., Ed.; Springer: New York, 2014, Vol. 1, pp. 445-481.
[50]
Krobitsch, S.; Clos, J. A novel role for 100 kD heat shock proteins in the parasite Leishmania donovani. Cell Stress Chaperones, 1999, 4(3), 191-198.
[51]
McCall, L.I.; Matlashewski, G. Involvement of the Leishmania donovani virulence factor A2 in protection against heat and oxidative stress. Exp. Parasitol., 2012, 132(2), 109-115.
[52]
Brandau, S.; Dresel, A.; Clos, J. High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania. Biochem. J., 1995, 310(Pt 1), 225-232.
[53]
Hubel, A.; Brandau, S.; Dresel, A.; Clos, J. A member of the Clpb family of stress proteins is expressed during heat-shock in Leishmania Spp. Mol. Biochem. Parasitol., 1995, 70(1-2), 107-118.
[54]
Krobitsch, S.; Brandau, S.; Hoyer, C.; Schmetz, C.; Hübel, A.; Clos, J. Leishmania donovani heat shock protein 100. Characterization and function in amastigote stage differentiation. J. Biol. Chem., 1998, 273(11), 6488-6494.
[55]
Larreta, R.; Soto, M.; Quijada, L.; Folgueira, C.; Abanades, D.R.; Alonso, C.; Requena, J.M. The expression of HSP83 genes in Leishmania infantum is affected by temperature and by stage-differentiation and is regulated at the levels of mRNA stability and translation. BMC Mol. Biol., 2004, 5, 3.
[56]
Clos, J.; Klaholz, L.; Kroemer, M.; Krobitsch, S.; Lindquist, S. Heat shock protein 100 and the amastigote stage-specific A2 proteins of Leishmania donovani. Med. Microbiol. Immunol., 2001, 190(1-2), 47-50.
[57]
Clos, J.; Krobitsch, S. Heat shock as a regular feature of the life cycle of Leishmania parasites. Am. Zool., 1999, 39(6), 848-856.
[58]
Hübel, A.; Krobitsch, S.; Hörauf, A.; Clos, J. Leishmania major Hsp100 is required chiefly in the mammalian stage of the parasite. Mol. Cell. Biol., 1997, 17(10), 5987-5995.
[59]
Lassmann, T.; Sonnhammer, E.L. Kalign--an accurate and fast multiple sequence alignment algorithm. BMC Bioinfo., 2005, 6, 298.
[60]
WHO; World Malaria Report 2016;, World Health Organization:
Geneva, 2016, 2017; pp. 186.. 2016.
[61]
Hakamada, K.; Watanabe, H.; Kawano, R.; Noguchi, K.; Yohda, M. Expression and characterization of the Plasmodium translocon of the exported proteins component EXP2. Biochem. Biophys. Res. Commun., 2017, 482(4), 700-705.
[62]
Deponte, M.; Hoppe, H.C.; Lee, M.C.; Maier, A.G.; Richard, D.; Rug, M.; Spielmann, T.; Przyborski, J.M. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol. Biochem. Parasitol., 2012, 186(2), 95-116.
[63]
AhYoung. A.P.; Koehl, A.; Cascio, D.; Egea, P.F. Structural mapping of the ClpB ATPases of Plasmodium falciparum: Targeting protein folding and secretion for antimalarial drug design. Protein Sci., 2015, 24(9), 1508-1520.
[64]
Rhiel, M.; Bittl, V.; Tribensky, A.; Charnaud, S.C.; Strecker, M.; Müller, S.; Lanzer, M.; Sanchez, C.; Schaeffer-Reiss, C.; Westermann, B.; Crabb, B.S.; Gilson, P.R.; Külzer, S.; Przyborski, J.M. Trafficking of the exported P. falciparum chaperone PfHsp70x. Sci. Rep., 2016, 6, 36174.
[65]
Charpian, S.; Przyborski, J.M. Protein transport across the parasitophorous vacuole of Plasmodium falciparum: Into the great wide open. Traffic, 2008, 9(2), 157-165.
[66]
de Koning-Ward, T.F.; Gilson, P.R.; Boddey, J.A.; Rug, M.; Smith, B.J.; Papenfuss, A.T.; Sanders, P.R.; Lundie, R.J.; Maier, A.G.; Cowman, A.F.; Crabb, B.S. A newly discovered protein export machine in malaria parasites. Nature, 2009, 459(7249), 945-949.
[67]
Peng, M.; Cascio, D.; Egea, P.F. Crystal structure and solution characterization of the thioredoxin-2 from Plasmodium falciparum, a constituent of an essential parasitic protein export complex. Biochem. Biophys. Res. Commun., 2015, 456(1), 403-409.
[68]
Elsworth, B.; Matthews, K.; Nie, C.Q.; Kalanon, M.; Charnaud, S.C.; Sanders, P.R.; Chisholm, S.A.; Counihan, N.A.; Shaw, P.J.; Pino, P.; Chan, J.A.; Azevedo, M.F.; Rogerson, S.J.; Beeson, J.G.; Crabb, B.S.; Gilson, P.R.; de Koning-Ward, T.F. PTEX is an essential nexus for protein export in malaria parasites. Nature, 2014, 511(7511), 587-591.
[69]
El Bakkouri, M.; Pow, A.; Mulichak, A.; Cheung, K.L.; Artz, J.D.; Amani, M.; Fell, S.; de Koning-Ward, T.F.; Goodman, C.D.; McFadden, G.I.; Ortega, J.; Hui, R.; Houry, W.A. The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum. J. Mol. Biol., 2010, 404(3), 456-477.
[70]
Pavithra, S.R.; Kumar, R.; Tatu, U. Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum. PLOS Comput. Biol., 2007, 3(9), 1701-1715.
[71]
Beck, J.R.; Muralidharan, V.; Oksman, A.; Goldberg, D.E. HSP101/PTEX mediates export of diverse malaria effector proteins into the host erythrocyte. Nature, 2014, 511(7511), 592-595.
[72]
Pesce, E.R.; Blatch, G.L. Plasmodial Hsp40 and Hsp70 chaperones: Current and future perspectives. Parasitology, 2014, 141(9), 1167-1176.
[73]
Przyborski, J.M.; Diehl, M.; Blatch, G.L. Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle. Front. Mol. Biosci., 2015, 2(34), 34.
[74]
Nillegoda, N.B.; Bukau, B. Metazoan Hsp70-based protein disaggregases: Emergence and mechanisms. Front. Mol. Biosci., 2015, 2, 57.
[75]
Karlin, S.; Brocchieri, L. Heat shock protein 70 family: Multiple sequence comparisons, function, and evolution. J. Mol. Evol., 1998, 47(5), 565-577.
[76]
da Silva, K.P.; Borges, J.C. The molecular chaperone Hsp70 family members function by a bidirectional heterotrophic allosteric mechanism. Protein Pept. Lett., 2011, 18(2), 132-142.
[77]
Daugaard, M.; Rohde, M.; Jaattela, M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett., 2007, 581(19), 3702-3710.
[78]
Mayer, M.P.; Schröder, H.; Rüdiger, S.; Paal, K.; Laufen, T.; Bukau, B. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol., 2000, 7(7), 586-593.
[79]
Mayer, M.P.; Brehmer, D.; Gässler, C.S.; Bukau, B. Hsp70 chaperone machines. Adv. Protein Chem., 2001, 59, 1-44.
[80]
Young, J.C. Mechanisms of the Hsp70 chaperone system. Biochem. Cell Biol., 2010, 88(2), 291-300.
[81]
Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci., 2005, 62(6), 670-684.
[82]
Wegele, H.; Müller, L.; Buchner, J. Hsp70 and Hsp90--a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol., 2004, 151, 1-44.
[83]
Takayama, S.; Reed, J.C. Molecular chaperone targeting and regulation by BAG family proteins. Nat. Cell Biol., 2001, 3(10), E237-E241.
[84]
Kabani, M.; McLellan, C.; Raynes, D.A.; Guerriero, V.; Brodsky, J.L. HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett., 2002, 531(2), 339-342.
[85]
Shaner, L.; Sousa, R.; Morano, K.A. Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry, 2006, 45(50), 15075-15084.
[86]
Raviol, H.; Sadlish, H.; Rodriguez, F.; Mayer, M.P.; Bukau, B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J., 2006, 25(11), 2510-2518.
[87]
Goeckeler, J.L.; Stephens, A.; Lee, P.; Caplan, A.J.; Brodsky, J.L. Overexpression of yeast Hsp110 homolog Sse1p suppresses ydj1-151 thermosensitivity and restores Hsp90-dependent activity. Mol. Biol. Cell, 2002, 13(8), 2760-2770.
[88]
Easton, D.P.; Kaneko, Y.; Subjeck, J.R. The hsp110 and Grp1 70 stress proteins: Newly recognized relatives of the Hsp70s. Cell Stress Chaperones, 2000, 5(4), 276-290.
[89]
Andréasson, C.; Fiaux, J.; Rampelt, H.; Druffel-Augustin, S.; Bukau, B. Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc. Natl. Acad. Sci. USA, 2008, 105(43), 16519-16524.
[90]
Schuermann, J.P.; Jiang, J.; Cuellar, J.; Llorca, O.; Wang, L.; Gimenez, L.E.; Jin, S.; Taylor, A.B.; Demeler, B.; Morano, K.A.; Hart, P.J.; Valpuesta, J.M.; Lafer, E.M.; Sousa, R. Structure of the Hsp110: Hsc70 nucleotide exchange machine. Mol. Cell, 2008, 31(2), 232-243.
[91]
Kampinga, H.H.; Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol., 2010, 11(8), 579-592.
[92]
Cyr, D.M.; Ramos, C.H. Specification of Hsp70 function by type I
and Type II Hsp40. In The Networking of Chaperones by Cochaperones,, Blatch, G.L.; Edkins, A.L., Eds. Springer International
Publishing: 2015, 78, pp. 91-102.
[93]
Mattoo, R.U.; Sharma, S.K.; Priya, S.; Finka, A.; Goloubinoff, P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J. Biol. Chem., 2013, 288(29), 21399-213411.
[94]
Requena, J.M.; Montalvo, A.M.; Fraga, J. Molecular chaperones of Leishmania: Central players in many stress-related and -unrelated physiological processes. BioMed Res. Int., 2015, 2015, 301326.
[96]
Zininga, T.; Achilonu, I.; Hoppe, H.; Prinsloo, E.; Dirr, H.W.; Shonhai, A. Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion. Cell Stress Chaperones, 2016, 21(3), 499-513.
[97]
Shonhai, A.; Maier, A.G.; Przyborski, J.M.; Blatch, G.L. Intracellular protozoan parasites of humans: The role of molecular chaperones in development and pathogenesis. Protein Pept. Lett., 2011, 18(2), 143-157.
[98]
Njunge, J.M.; Ludewig, M.H.; Boshoff, A.; Pesce, E.R.; Blatch, G.L. Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: Structure, function, clinical relevance, and drug targets. Curr. Pharm. Des., 2013, 19(3), 387-403.
[99]
Zininga, T.; Pooe, O.J.; Makhado, P.B.; Ramatsui, L.; Prinsloo, E.; Achilonu, I.; Dirr, H.; Shonhai, A. Polymyxin B inhibits the chaperone activity of Plasmodium falciparum Hsp70. Cell Stress Chaperones, 2017, 22(5), 707-715.
[100]
Shonhai, A.; Botha, M.; de Beer, T.A.P.; Boshoff, A.; Blatch, G.L. Structure-function study of a Plasmodium falciparum Hsp70 using three dimensional modelling and in vitro analyses. Protein Pept. Lett., 2008, 15, 1117-1125.
[101]
Muralidharan, V.; Oksman, A.; Pal, P.; Lindquist, S.; Goldberg, D.E. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat. Commun., 2012, 3, 1310.