Review Article

植物甾醇与炎症

卷 26, 期 37, 2019

页: [6724 - 6734] 页: 11

弟呕挨: 10.2174/0929867325666180622151438

价格: $65

摘要

除了富含植物甾醇/甾烷醇的食品和补品对血清LDL-C浓度的良好表征外,现在有证据表明植物甾醇对非脂质变量(例如炎症和氧化应激指标,凝血参数和内皮功能)具有有益作用。这使得甾醇和甾烷醇成为预防心血管疾病(尤其是中低风险人群)的饮食干预措施中有吸引力的替代方法。这篇综述旨在总结从实验研究和人类数据中获得的有关植物甾醇/甾烷醇的抗炎作用及其与促进动脉粥样硬化保护和预防心血管疾病的相关性的最新知识。在体外研究和实验动物模型中已经证明了由植物固醇/甾烷醇诱导的抗炎作用。但是,并非在实验水平上看到的所有有益作用都转化为临床益处。实际上,评估植物甾醇消耗与炎性变量(CRP和细胞因子)之间关系的临床研究并不一致,并且尚未提供可靠的答案。已经提出植物固醇作为他汀类药物治疗的有用辅助剂,以进一步降低心血管疾病的风险。但是,可用数据有限,需要做更多的研究。

关键词: 植物甾醇,炎症,氧化应激,低密度脂蛋白,胆固醇,CRP,细胞因子。

[1]
Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M. Cardiovascular disease in Europe 2014: epidemiological update. Eur. Heart J., 2014, 35(42), 2929.
[http://dx.doi.org/10.1093/eurheartj/ehu299] [PMID: 25381246]
[2]
Badimon, L.; Padró, T.; Vilahur, G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Heart J. Acute Cardiovasc. Care, 2012, 1(1), 60-74.
[http://dx.doi.org/10.1177/2048872612441582] [PMID: 24062891]
[3]
Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol., 2010, 10(1), 36-46.
[http://dx.doi.org/10.1038/nri2675] [PMID: 19960040]
[4]
McLaren, J.E.; Michael, D.R.; Ashlin, T.G.; Ramji, D.P. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog. Lipid Res., 2011, 50(4), 331-347.
[http://dx.doi.org/10.1016/j.plipres.2011.04.002] [PMID: 21601592]
[5]
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[6]
Tabas, I.; Lichtman, A.H. Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity, 2017, 47(4), 621-634.
[http://dx.doi.org/10.1016/j.immuni.2017.09.008] [PMID: 29045897]
[7]
Krupinski, J.; Turu, M.M.; Martinez-Gonzalez, J.; Carvajal, A.; Juan-Babot, J.O.; Iborra, E.; Slevin, M.; Rubio, F.; Badimon, L. Endogenous expression of C-reactive protein is increased in active (ulcerated noncomplicated) human carotid artery plaques. Stroke, 2006, 37(5), 1200-1204.
[http://dx.doi.org/10.1161/01.STR.0000217386.37107.be] [PMID: 16601222]
[8]
Ridker, P.M.; Lüscher, T.F. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J., 2014, 35(27), 1782-1791.
[http://dx.doi.org/10.1093/eurheartj/ehu203] [PMID: 24864079]
[9]
Kocarnik, J.M.; Pendergrass, S.A.; Carty, C.L.; Pankow, J.S.; Schumacher, F.R.; Cheng, I.; Durda, P.; Ambite, J.L.; Deelman, E.; Cook, N.R.; Liu, S.; Wactawski-Wende, J.; Hutter, C.; Brown-Gentry, K.; Wilson, S.; Best, L.G.; Pankratz, N.; Hong, C.P.; Cole, S.A.; Voruganti, V.S.; Bůžkova, P.; Jorgensen, N.W.; Jenny, N.S.; Wilkens, L.R.; Haiman, C.A.; Kolonel, L.N.; Lacroix, A.; North, K.; Jackson, R.; Le Marchand, L.; Hindorff, L.A.; Crawford, D.C.; Gross, M.; Peters, U. Multiancestral analysis of inflammation-related genetic variants and C-reactive protein in the population architecture using genomics and epidemiology study. Circ Cardiovasc Genet, 2014, 7(2), 178-188.
[http://dx.doi.org/10.1161/CIRCGENETICS.113.000173] [PMID: 24622110]
[10]
Suades, R.; Padró, T.; Alonso, R.; López-Miranda, J.; Mata, P.; Badimon, L. Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thromb. Haemost., 2014, 111(1), 111-121.
[http://dx.doi.org/10.1160/TH13-07-0612] [PMID: 24085382]
[11]
Escate, R.; Mata, P.; Cepeda, J.M.; Padro, T.; Badimon, L. miR-505-3p controls chemokine receptor up-regulation in macrophages: role in familial hypercholesterolemia. FASEB J., 2018. fj201700476R
[http://dx.doi.org/10.1096/fj.201700476R] [PMID: 29089446]
[12]
de Carvalho, J.F.; Bonfá, E.; Borba, E.F. Systemic lupus erythematosus and “lupus dyslipoproteinemia”. Autoimmun. Rev., 2008, 7(3), 246-250.
[http://dx.doi.org/10.1016/j.autrev.2007.11.016] [PMID: 18190886]
[13]
Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L.; Silbernagel, G.; Staels, B.; Borén, J.; Catapano, A.L.; De Backer, G.; Deanfield, J.; Descamps, O.S.; Kovanen, P.T.; Riccardi, G.; Tokgözoglu, L.; Chapman, M.J. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis, 2014, 232(2), 346-360.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.11.043] [PMID: 24468148]
[14]
Sabeva, N.S.; McPhaul, C.M.; Li, X.; Cory, T.J.; Feola, D.J.; Graf, G.A. Phytosterols differentially influence ABC transporter expression, cholesterol efflux and inflammatory cytokine secretion in macrophage foam cells. J. Nutr. Biochem., 2011, 22(8), 777-783.
[http://dx.doi.org/10.1016/j.jnutbio.2010.07.002] [PMID: 21111593]
[15]
Plat, J.; Hendrikx, T.; Bieghs, V.; Jeurissen, M.L.; Walenbergh, S.M.; van Gorp, P.J.; De Smet, E.; Konings, M.; Vreugdenhil, A.C.; Guichot, Y.D.; Rensen, S.S.; Buurman, W.A.; Greve, J.W.; Lütjohann, D.; Mensink, R.P.; Shiri-Sverdlov, R. Protective role of plant sterol and stanol esters in liver inflammation: insights from mice and humans. PLoS One, 2014, 9(10)e110758
[http://dx.doi.org/10.1371/journal.pone.0110758] [PMID: 25356831]
[16]
Ekroos, K.; Jänis, M.; Tarasov, K.; Hurme, R.; Laaksonen, R. Lipidomics: a tool for studies of atherosclerosis. Curr. Atheroscler. Rep., 2010, 12(4), 273-281.
[http://dx.doi.org/10.1007/s11883-010-0110-y] [PMID: 20425241]
[17]
de Mello, V.D.; Lankinen, M.; Schwab, U.; Kolehmainen, M.; Lehto, S.; Seppänen-Laakso, T.; Oresic, M.; Pulkkinen, L.; Uusitupa, M.; Erkkilä, A.T. Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia, 2009, 52(12), 2612-2615.
[http://dx.doi.org/10.1007/s00125-009-1482-9] [PMID: 19669729]
[18]
Boon, J.; Hoy, A.J.; Stark, R.; Brown, R.D.; Meex, R.C.; Henstridge, D.C.; Schenk, S.; Meikle, P.J.; Horowitz, J.F.; Kingwell, B.A.; Bruce, C.R.; Watt, M.J. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes, 2013, 62(2), 401-410.
[http://dx.doi.org/10.2337/db12-0686] [PMID: 23139352]
[19]
Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; März, W.; Scharnagl, H.; Stojakovic, T.; Vlachopoulou, E.; Lokki, M.L.; Nieminen, M.S.; Klingenberg, R.; Matter, C.M.; Hornemann, T.; Jüni, P.; Rodondi, N.; Räber, L.; Windecker, S.; Gencer, B.; Pedersen, E.R.; Tell, G.S.; Nygård, O.; Mach, F.; Sinisalo, J.; Lüscher, T.F. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J., 2016, 37(25), 1967-1976.
[http://dx.doi.org/10.1093/eurheartj/ehw148] [PMID: 27125947]
[20]
Havulinna, A.S.; Sysi-Aho, M.; Hilvo, M.; Kauhanen, D.; Hurme, R.; Ekroos, K.; Salomaa, V.; Laaksonen, R. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 Cohort. Arterioscler. Thromb. Vasc. Biol., 2016, 36(12), 2424-2430.
[http://dx.doi.org/10.1161/ATVBAHA.116.307497] [PMID: 27765765]
[21]
Wallace, M.; Morris, C.; O’Grada, C.M.; Ryan, M.; Dillon, E.T.; Coleman, E.; Gibney, E.R.; Gibney, M.J.; Roche, H.M.; Brennan, L. Relationship between the lipidome, inflammatory markers and insulin resistance. Mol. Biosyst., 2014, 10(6), 1586-1595.
[http://dx.doi.org/10.1039/C3MB70529C] [PMID: 24714806]
[22]
Floegel, A.; Kuhn, T.; Sookthai, D.; Johnson, T.; Prehn, C.; Rolle-Kampczyk, U.; Otto, W.; Weikert, C.; Illig, T.; von Bergen, M.; Adamski, J.; Boeing, H.; Kaaks, R.; Pischon, T. Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts. Eur. J. Epidemiol., 2018, 33(1), 55-66.
[http://dx.doi.org/10.1007/s10654-017-0333-0] [PMID: 29181692]
[23]
Szymańska, E.; van Dorsten, F.A.; Troost, J.; Paliukhovich, I.; van Velzen, E.J.; Hendriks, M.M.; Trautwein, E.A.; van Duynhoven, J.P.; Vreeken, R.J.; Smilde, A.K. A lipidomic analysis approach to evaluate the response to cholesterol-lowering food intake. Metabolomics, 2012, 8(5), 894-906.
[http://dx.doi.org/10.1007/s11306-011-0384-2] [PMID: 23060736]
[24]
Padro, T.; Vilahur, G.; Sánchez-Hernández, J.; Hernández, M.; Antonijoan, R.M.; Perez, A.; Badimon, L. Lipidomic changes of LDL in overweight and moderately hypercholesterolemic subjects taking phytosterol- and omega-3-supplemented milk. J. Lipid Res., 2015, 56(5), 1043-1056.
[http://dx.doi.org/10.1194/jlr.P052217] [PMID: 25773888]
[25]
Huang, Y.H.; Schäfer-Elinder, L.; Wu, R.; Claesson, H.E.; Frostegård, J. Lysophosphatidylcholine (LPC) induces proinflammatory cytokines by a platelet-activating factor (PAF) receptor-dependent mechanism. Clin. Exp. Immunol., 1999, 116(2), 326-331.
[http://dx.doi.org/10.1046/j.1365-2249.1999.00871.x] [PMID: 10337026]
[26]
Sigruener, A.; Kleber, M.E.; Heimerl, S.; Liebisch, G.; Schmitz, G.; Maerz, W. Glycerophospholipid and sphingolipid species and mortality: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS One, 2014, 9(1)e85724
[http://dx.doi.org/10.1371/journal.pone.0085724] [PMID: 24465667]
[27]
Kim, S.J.; Jeong, H.J.; Yi, B.J.; Kang, T.H.; An, N.H.; Lee, E.H.; Yang, D.C.; Kim, H.M.; Hong, S.H.; Um, J.Y. Transgenic Panax ginseng inhibits the production of TNF-alpha, IL-6, and IL-8 as well as COX-2 expression in human mast cells. Am. J. Chin. Med., 2007, 35(2), 329-339.
[http://dx.doi.org/10.1142/S0192415X07004850] [PMID: 17436372]
[28]
Nashed, B.; Yeganeh, B. HayGlass, K.T.; Moghadasian, M.H. Antiatherogenic effects of dietary plant sterols are associated with inhibition of proinflammatory cytokine production in Apo E-KO mice. J. Nutr., 2005, 135(10), 2438-2444.
[http://dx.doi.org/10.1093/jn/135.10.2438] [PMID: 16177209]
[29]
Perez-Ternero, C.; Claro, C.; Parrado, J.; Herrera, M.D.; Alvarez de Sotomayor, M. Rice bran enzymatic extract reduces atherosclerotic plaque development and steatosis in high-fat fed ApoE-/- mice. Nutrition, 2017, 37, 22-29.
[http://dx.doi.org/10.1016/j.nut.2016.12.005] [PMID: 28359358]
[30]
Calpe-Berdiel, L.; Escolà-Gil, J.C.; Benítez, S.; Bancells, C.; González-Sastre, F.; Palomer, X.; Blanco-Vaca, F. Dietary phytosterols modulate T-helper immune response but do not induce apparent anti-inflammatory effects in a mouse model of acute, aseptic inflammation. Life Sci., 2007, 80(21), 1951-1956.
[http://dx.doi.org/10.1016/j.lfs.2007.02.032] [PMID: 17382351]
[31]
Hu, Q.; Zhuo, Z.; Fang, S.; Zhang, Y.; Feng, J. Phytosterols improve immunity and exert anti-inflammatory activity in weaned piglets. J. Sci. Food Agric., 2017, 97(12), 4103-4109.
[http://dx.doi.org/10.1002/jsfa.8277] [PMID: 28218810]
[32]
Awad, A.B.; Toczek, J.; Fink, C.S. Phytosterols decrease prostaglandin release in cultured P388D1/MAB macrophages. Prostaglandins Leukot. Essent. Fatty Acids, 2004, 70(6), 511-520.
[http://dx.doi.org/10.1016/j.plefa.2003.11.005] [PMID: 15120714]
[33]
Feigin, A.M.; Teeter, J.H.; Brand, J.G. The influence of sterols on the sensitivity of lipid bilayers to melittin. Biochem. Biophys. Res. Commun., 1995, 211(1), 312-317.
[http://dx.doi.org/10.1006/bbrc.1995.1812] [PMID: 7779101]
[34]
Awad, A.B.; Downie, A.C.; Fink, C.S. Inhibition of growth and stimulation of apoptosis by beta-sitosterol treatment of MDA-MB-231 human breast cancer cells in culture. Int. J. Mol. Med., 2000, 5(5), 541-545.
[http://dx.doi.org/10.3892/ijmm.5.5.541] [PMID: 10762659]
[35]
Tovey, F.I.; Bardhan, K.D.; Hobsley, M. Dietary phosphilipids and sterols protective against peptic ulceration. Phytother. Res., 2013, 27(9), 1265-1269.
[http://dx.doi.org/10.1002/ptr.4865] [PMID: 23097339]
[36]
Antonisamy, P.; Subash-Babu, P.; Alshatwi, A.A.; Aravinthan, A.; Ignacimuthu, S.; Choi, K.C.; Kim, J.H. Gastroprotective effect of nymphayol isolated from Nymphaea stellata (Willd.) flowers: contribution of antioxidant, anti-inflammatory and anti-apoptotic activities. Chem. Biol. Interact., 2014, 224, 157-163.
[http://dx.doi.org/10.1016/j.cbi.2014.09.020] [PMID: 25289771]
[37]
Aldini, R.; Micucci, M.; Cevenini, M.; Fato, R.; Bergamini, C.; Nanni, C.; Cont, M.; Camborata, C.; Spinozzi, S.; Montagnani, M.; Roda, G.; D’Errico-Grigioni, A.; Rosini, F.; Roda, A.; Mazzella, G.; Chiarini, A.; Budriesi, R. Antiinflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study. PLoS One, 2014, 9(9) e108112
[http://dx.doi.org/10.1371/journal.pone.0108112] [PMID: 25268769]
[38]
Al-Okbi, S.Y. Nutraceuticals of anti-inflammatory activity as complementary therapy for rheumatoid arthritis. Toxicol. Ind. Health, 2014, 30(8), 738-749.
[http://dx.doi.org/10.1177/0748233712462468] [PMID: 23104728]
[39]
Khan, S.; Mehmood, M.H.; Ali, A.N.; Ahmed, F.S.; Dar, A.; Gilani, A.H. Studies on anti-inflammatory and analgesic activities of betel nut in rodents. J. Ethnopharmacol., 2011, 135(3), 654-661.
[http://dx.doi.org/10.1016/j.jep.2011.03.064] [PMID: 21501676]
[40]
la Torre Fabiola, V.D.; Ralf, K.; Gabriel, B.; Victor Ermilo, A.A.; Martha, M.G.; Mirbella, C.F.; Rocio, B.A. Anti-inflammatory and immunomodulatory effects of Critonia aromatisans leaves: Downregulation of pro-inflammatory cytokines. J. Ethnopharmacol., 2016, 190, 174-182.
[http://dx.doi.org/10.1016/j.jep.2016.06.006] [PMID: 27282666]
[41]
Al-Yousuf, M.H.; Ali, B.H.; Bashir, A.K.; Tanira, M.O.; Blunden, G. Central nervous system activity of Leucas inflata Benth. in mice. Phytomedicine, 2002, 9(6), 501-507.
[http://dx.doi.org/10.1078/09447110260573128] [PMID: 12403158]
[42]
Villaseñor, I.M.; Angelada, J.; Canlas, A.P.; Echegoyen, D. Bioactivity studies on beta-sitosterol and its glucoside. Phytother. Res., 2002, 16(5), 417-421.
[http://dx.doi.org/10.1002/ptr.910] [PMID: 12203259]
[43]
Gao, S.; Li, H.; Zhou, X.Q.; You, J.B.; Tu, D.N.; Xia, G.; Jiang, J.X.; Xin, C. Withaferin A attenuates lipopolysaccharide-induced acute lung injury in neonatal rats. Cell. Mol. Biol., 2015, 61(3), 102-106.
[PMID: 26255139]
[44]
Yan, X.; Huang, G.; Liu, Q.; Zheng, J.; Chen, H.; Huang, Q.; Chen, J.; Huang, H. Withaferin A protects against spinal cord injury by inhibiting apoptosis and inflammation in mice. Pharm. Biol., 2017, 55(1), 1171-1176.
[http://dx.doi.org/10.1080/13880209.2017.1288262] [PMID: 28228044]
[45]
Shishodia, S.; Aggarwal, B.B. Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J. Biol. Chem., 2004, 279(45), 47148-47158.
[http://dx.doi.org/10.1074/jbc.M408093200] [PMID: 15322087]
[46]
Devaraj, S.; Jialal, I.; Rockwood, J.; Zak, D. Effect of orange juice and beverage with phytosterols on cytokines and PAI-1 activity. Clin. Nutr., 2011, 30(5), 668-671.
[http://dx.doi.org/10.1016/j.clnu.2011.03.009] [PMID: 21477901]
[47]
Devaraj, S.; Autret, B.C.; Jialal, I. Reduced-calorie orange juice beverage with plant sterols lowers C-reactive protein concentrations and improves the lipid profile in human volunteers. Am. J. Clin. Nutr., 2006, 84(4), 756-761.
[http://dx.doi.org/10.1093/ajcn/84.4.756] [PMID: 17023701]
[48]
Athyros, V.G.; Kakafika, A.I.; Papageorgiou, A.A.; Tziomalos, K.; Peletidou, A.; Vosikis, C.; Karagiannis, A.; Mikhailidis, D.P. Effect of a plant stanol ester-containing spread, placebo spread, or Mediterranean diet on estimated cardiovascular risk and lipid, inflammatory and haemostatic factors. Nutr. Metab. Cardiovasc. Dis., 2011, 21(3), 213-221.
[http://dx.doi.org/10.1016/j.numecd.2009.08.014] [PMID: 19939653]
[49]
Clifton, P.M.; Mano, M.; Duchateau, G.S.; van der Knaap, H.C.; Trautwein, E.A. Dose-response effects of different plant sterol sources in fat spreads on serum lipids and C-reactive protein and on the kinetic behavior of serum plant sterols. Eur. J. Clin. Nutr., 2008, 62(8), 968-977.
[http://dx.doi.org/10.1038/sj.ejcn.1602814] [PMID: 17538539]
[50]
Lambert, C.; Cubedo, J.; Padró, T.; Sánchez-Hernández, J.; Antonijoan, R.M.; Perez, A.; Badimon, L. Phytosterols and Omega 3 supplementation exert novel regulatory effects on metabolic and inflammatory pathways: a proteomic study. Nutrients, 2017, 9(6), 9.
[http://dx.doi.org/10.3390/nu9060599] [PMID: 28608804]
[51]
Ras, R.T.; Fuchs, D.; Koppenol, W.P.; Schalkwijk, C.G.; Otten-Hofman, A.; Garczarek, U.; Greyling, A.; Wagner, F.; Trautwein, E.A. Effect of a plant sterol-enriched spread on biomarkers of endothelial dysfunction and low-grade inflammation in hypercholesterolaemic subjects. J. Nutr. Sci., 2016, 5 e44
[http://dx.doi.org/10.1017/jns.2016.40] [PMID: 28620471]
[52]
Heggen, E.; Kirkhus, B.; Pedersen, J.I.; Tonstad, S. Effects of margarine enriched with plant sterol esters from rapeseed and tall oils on markers of endothelial function, inflammation and hemostasis. Scand. J. Clin. Lab. Invest., 2015, 75(2), 189-192.
[http://dx.doi.org/10.3109/00365513.2014.992040] [PMID: 25553599]
[53]
Rocha, V.Z.; Ras, R.T.; Gagliardi, A.C.; Mangili, L.C.; Trautwein, E.A.; Santos, R.D. Effects of phytosterols on markers of inflammation: A systematic review and meta-analysis. Atherosclerosis, 2016, 248, 76-83.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.01.035] [PMID: 26987068]
[54]
Micallef, M.A.; Garg, M.L. Anti-inflammatory and cardioprotective effects of n-3 polyunsaturated fatty acids and plant sterols in hyperlipidemic individuals. Atherosclerosis, 2009, 204(2), 476-482.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.09.020] [PMID: 18977480]
[55]
Plat, J.; Brufau, G.; Dallinga-Thie, G.M.; Dasselaar, M.; Mensink, R.P. A plant stanol yogurt drink alone or combined with a low-dose statin lowers serum triacylglycerol and non-HDL cholesterol in metabolic syndrome patients. J. Nutr., 2009, 139(6), 1143-1149.
[http://dx.doi.org/10.3945/jn.108.103481] [PMID: 19403719]
[56]
Ras, R.T.; Hiemstra, H.; Lin, Y.; Vermeer, M.A.; Duchateau, G.S.; Trautwein, E.A. Consumption of plant sterol-enriched foods and effects on plasma plant sterol concentrations--a meta-analysis of randomized controlled studies. Atherosclerosis, 2013, 230(2), 336-346.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.08.012] [PMID: 24075766]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy