[1]
Taylor, A.M.; Blurton-Jones, M.; Rhee, S.W.; Cribbs, D.H.; Cotman, C.W.; Jeon, N.L. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods, 2005, 2(8), 599-605.
[2]
Shi, P.; Nedelec, S.; Wichterle, H.; Kam, L.C. Combined microfluidics/protein patterning platform for pharmacological interrogation of axon pathfinding. Lab Chip, 2010, 10(8), 1005-1010.
[3]
Taylor, A.M.; Dieterich, D.C.; Ito, H.T.; Kim, S.A.; Schuman, E.M. Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron, 2010, 66(1), 57-68.
[4]
Song, H.L.; Shim, S.; Kim, D.H.; Won, S.H.; Joo, S.; Kim, S.; Jeon, N.L.; Yoon, S.Y. β-Amyloid is transmitted via neuronal connections along axonal membranes. Ann. Neurol., 2014, 75(1), 88-97.
[5]
Aurand, E.R.; Lampe, K.J.; Bjugstad, K.B. Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci. Res., 2012, 72(3), 199-213.
[6]
Katz, J.S.; Burdick, J.A. Hydrogel mediated delivery of trophic factors for neural repair. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(1), 128-139.
[7]
Wang, Y.; Yang, Y.; Yan, L.; Kwok, S.Y.; Li, W.; Wang, Z.; Zhu, X.; Zhu, G.; Zhang, W.; Chen, X.; Shi, P. Poking cells for efficient vector-free intracellular delivery. Nat. Commun., 2014, 5, 4466.
[8]
Chen, X.; Zhu, G.; Yang, Y.; Wang, B.; Yan, L.; Zhang, K.Y.; Lo, K.K.W.; Zhang, W. A diamond nanoneedle array for potential high-throughput intracellular delivery. Adv. Healthc. Mater., 2013, 2(8), 1103-1107.
[9]
Li, W.; Xu, Z.; Xu, B.; Chan, C.Y.; Lin, X.; Wang, Y.; Chen, G.; Wang, Z.; Yuan, Q.; Zhu, G.; Sun, H.; Wu, W.; Shi, P. Investigation of the subcellular neurotoxicity of amyloid-beta using a device integrating microfluidic perfusion and chemotactic guidance. Adv. Healthc. Mater., 2017, 6(7), 1600895.
[10]
Lampe, K.J.; Bjugstad, K.B.; Mahoney, M.J. Impact of degradable macromer content in a poly(ethylene glycol) hydrogel on neural cell metabolic activity, redox state, proliferation, and differentiation. Tissue Eng. Part A, 2010, 16(6), 1857-1866.
[11]
Burdick, J.A.; Ward, M.; Liang, E.; Young, M.J.; Langer, R. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials, 2006, 27(3), 452-459.
[12]
Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J. Biomed. Sci., 2009, 16, 108.
[13]
Freudenberg, U.; Hermann, A.; Welzel, P.B.; Stirl, K.; Schwarz, S.C.; Grimmer, M.; Zieris, A.; Panyanuwat, W.; Zschoche, S.; Meinhold, D.; Storch, A.; Werner, C. A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials, 2009, 30(28), 5049-5060.
[14]
Nerbonne, J.M. Caged compounds: Tools for illuminating neuronal responses and connections. Curr. Opin. Neurobiol., 1996, 6(3), 379-386.
[15]
Lima, S.Q.; Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 2005, 121(1), 141-152.
[16]
Mayer, G.; Heckel, A. Biologically active molecules with a “light switch”. Angew. Chem. Int. Ed. Engl., 2006, 45(30), 4900-4921.
[17]
Wong, Y.; Markham, K.; Xu, Z.P.; Chen, M.; Max Lu, G.Q.; Bartlett, P.F.; Cooper, H.M. Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles. Biomaterials, 2010, 31(33), 8770-8779.
[18]
D’Este, E.; Baj, G.; Beuzer, P.; Ferrari, E.; Pinato, G.; Tongiorgi, E.; Cojoc, D. Use of optical tweezers technology for long-term, focal stimulation of specific subcellular neuronal compartments. Integr. Biol., 2011, 3(5), 568-577.
[19]
Pinato, G.; Raffaelli, T.; D’Este, E.; Tavano, F.; Cojoc, D. Optical delivery of liposome encapsulated chemical stimuli to neuronal cells. J. Biomed. Opt., 2011, 16(9), 095001.
[20]
Takahashi, H.; Sakurai, T.; Sakai, H.; Bakkum, D.J.; Suzurikawa, J.; Kanzaki, R. Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2. Biosystems, 2012, 107(2), 106-112.
[21]
Edupuganti, O.P.; Ovsepian, S.V.; Wang, J.; Zurawski, T.H.; Schmidt, J.J.; Smith, L.; Lawrence, G.W.; Dolly, J.O. Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. FEBS J., 2012, 279(14), 2555-2567.
[22]
Li, W.; Luo, R.; Lin, X.; Jadhav, A.D.; Zhang, Z.; Yan, L.; Chan, C.Y.; Chen, X.; He, J.; Chen, C.H.; Shi, P. Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials, 2015, 65, 76-85.
[23]
Luo, R.C.; Ranjan, S.; Zhang, Y.; Chen, C.H. Near-infrared photothermal activation of microgels incorporating polypyrrole nanotransducers through droplet microfluidics. Chem. Commun. (Camb.), 2013, 49(72), 7887-7889.
[24]
Luo, Y.; Shoichet, M.S. Light-activated immobilization of biomolecules to agarose hydrogels for controlled cellular response. Biomacromolecules, 2004, 5(6), 2315-2323.
[25]
Kohman, R.E.; Cha, S.S.; Man, H.Y.; Han, X. Light-triggered release of bioactive molecules from DNA nanostructures. Nano Lett., 2016, 16(4), 2781-2785.
[26]
Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem., 2010, 79, 65-87.
[27]
Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc., 2014, 136(32), 11198-11211.
[28]
Callaway, E.M.; Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA, 1993, 90(16), 7661-7665.
[29]
Tsien, R.Y.; Zucker, R.S. Control of cytoplasmic calcium with photolabile tetracarboxylate 2-nitrobenzhydrol chelators. Biophys. J., 1986, 50(5), 843-853.
[30]
Amatrudo, J.M.; Olson, J.P.; Lur, G.; Chiu, C.Q.; Higley, M.J.; Ellis-Davies, G.C.R. Wavelength-selective one- and two-photon uncaging of GABA. ACS Chem. Neurosci., 2014, 5(1), 64-70.
[31]
Kantevari, S.; Matsuzaki, M.; Kanemoto, Y.; Kasai, H.; Ellis-Davies, G.C. Two-color, two-photon uncaging of glutamate and GABA. Nat. Methods, 2010, 7(2), 123-125.
[32]
Nadler, A.; Yushchenko, D.A.; Müller, R.; Stein, F.; Feng, S.; Mulle, C.; Carta, M.; Schultz, C. Exclusive photorelease of signalling lipids at the plasma membrane. Nat. Commun., 2015, 6, 10056.
[33]
Araya, R.; Andino-Pavlovsky, V.; Yuste, R.; Etchenique, R. Two-photon optical interrogation of individual dendritic spines with caged dopamine. ACS Chem. Neurosci., 2013, 4(8), 1163-1167.
[34]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[35]
Chen, W.; Deng, W.; Goldys, E.M. Light-triggerable liposomes for enhanced endolysosomal escape and gene silencing in PC12 cells. Mol. Ther-Nucl. Mol. Ther. Nucleic Acids, 2017, 7, 366-377.
[36]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[37]
Moussa, H.G.; Martins, A.M.; Husseini, G.A. Review on triggered liposomal drug delivery with a focus on ultrasound. Curr. Cancer Drug Targets, 2015, 15(4), 282-313.
[38]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[39]
Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev., 2015, 115(19), 10938-10966.
[40]
Pinato, G.; Lien, L.T.; D’Este, E.; Torre, V.; Cojoc, D. Neuronal chemotaxis by optically manipulated liposomes. J. Eur. Opt. Soc-Rapid, 2011, 6, 11042.
[41]
Sun, B.; Chiu, D.T. Spatially and temporally resolved delivery of stimuli to single cells. J. Am. Chem. Soc., 2003, 125(13), 3702-3703.
[42]
Yokota, M.; Tani, E.; Tsubuki, S.; Yamaura, I.; Nakagaki, I.; Hori, S.; Saido, T.C. Calpain inhibitor entrapped in liposome rescues ischemic neuronal damage. Brain Res., 1999, 819(1-2), 8-14.
[43]
Zhang, Z.N.; Freitas, B.C.; Qian, H.; Lux, J.; Acab, A.; Trujillo, C.A.; Herai, R.H.; Nguyen Huu, V.A.; Wen, J.H.; Joshi-Barr, S.; Karpiak, J.V.; Engler, A.J.; Fu, X.D.; Muotri, A.R.; Almutairi, A. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc. Natl. Acad. Sci. USA, 2016, 113(12), 3185-3190.
[44]
Giri, T.K.; Thakur, A.; Alexander, A. Ajazuddin; Badwaik, H.; Tripathi, D.K., Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm. Sin. B, 2012, 2(5), 439-449.
[45]
Del Valle, L.J.; Díaz, A.; Puiggalí, J. Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels, 2017, 3(3), 27-55.
[46]
McKinnon, D.D.; Brown, T.E.; Kyburz, K.A.; Kiyotake, E.; Anseth, K.S. Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. Biomacromolecules, 2014, 15(7), 2808-2816.
[47]
Laganà, A.; Venditti, I.; Fratoddi, I.; Capriotti, A.L.; Caruso, G.; Battocchio, C.; Polzonetti, G.; Acconcia, F.; Marino, M.; Russo, M.V. Nanostructured functional co-polymers bioconjugate integrin inhibitors. J. Colloid Interface Sci., 2011, 361(2), 465-471.
[48]
Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014(15), 869269.
[49]
Neely, A.; Perry, C.; Varisli, B.; Singh, A.K.; Arbneshi, T.; Senapati, D.; Kalluri, J.R.; Ray, P.C. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano, 2009, 3(9), 2834-2840.
[50]
Carling, C.J.; Viger, M.L.; Huu, V.A.N.; Garcia, A.V.; Almutairi, A. In vivo visible light-triggered drug release from an implanted depot. Chem. Sci. (Camb.), 2015, 6(1), 335-341.
[51]
Yang, Y.; Mu, J.; Xing, B. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(2), 1-19.
[52]
D’Amato, R.; Venditti, I.; Russo, M.V.; Falconieri, M. Growth control and long-range self-assembly of poly(methyl methacrylate) nanospheres. J. Appl. Polym. Sci., 2006, 102(5), 4493-4499.
[53]
Sahni, J.K.; Doggui, S.; Ali, J.; Baboota, S.; Dao, L.; Ramassamy, C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J. Control. Release, 2011, 152(2), 208-231.
[54]
Davis, S.S. Biomedical applications of nanotechnology-implications for drug targeting and gene therapy. Trends Biotechnol., 1997, 15(6), 217-224.
[55]
Carvalho-de-Souza, J.L.; Treger, J.S.; Dang, B.; Kent, S.B.H.; Pepperberg, D.R.; Bezanilla, F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron, 2015, 86(1), 207-217.
[56]
Rossi, A.; Donati, S.; Fontana, L.; Porcaro, F.; Battocchio, C.; Proietti, E.; Venditti, I.; Bracci, L.; Fratoddi, I. Negatively charged gold nanoparticles as a dexamethasone carrier: stability in biological media and bioactivity assessment in vitro. Rsc Adv., 2016, 6(101), 99016-99022.
[57]
Campardelli, R.; Della Porta, G.; Gomez, L.; Irusta, S.; Reverchon, E.; Santamaria, J. Au-PLA nanocomposites for photothermally controlled drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(4), 409-417.
[58]
Venditti, I.; Hassanein, T.F.; Fratoddi, I.; Fontana, L.; Battocchio, C.; Rinaldi, F.; Carafa, M.; Marianecci, C.; Diociaiuti, M.; Agostinelli, E.; Cametti, C.; Russo, M.V. Bioconjugation of gold-polymer core-shell nanoparticles with bovine serum amine oxidase for biomedical applications. Colloids Surf. B Biointerfaces, 2015, 134, 314-321.
[59]
Paviolo, C.; Stoddart, P.R. Gold nanoparticles for modulating neuronal behavior. Nanomaterials (Basel), 2017, 7(4), 92-106.
[60]
Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol., 1982, 99(2), 237-247.
[61]
Kallenbach, N.R.; Ma, R.I.; Seeman, N.C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature, 1983, 305(5937), 829-831.
[62]
Seeman, N.C. DNA in a material world. Nature, 2003, 421(6921), 427-431.
[63]
Jones, M.R.; Seeman, N.C.; Mirkin, C.A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science, 2015, 347(6224), 1260901.
[64]
Jung, S.; Bang, M.; Kim, B.S.; Lee, S.; Kotov, N.A.; Kim, B.; Jeon, D. Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One, 2014, 9(3), e91360.
[65]
Alon, N.; Miroshnikov, Y.; Perkas, N.; Nissan, I.; Gedanken, A.; Shefi, O. Substrates coated with silver nanoparticles as a neuronal regenerative material. Int. J. Nanomedicine, 2014, 9(Suppl. 1), 23-31.
[66]
Saito, A.; Nakashima, Y.; Shimba, K.; Takayama, Y.; Kotani, K.; Jimbo, Y. Modulation of neuronal network activity using magnetic nanoparticle-based astrocytic network integration. Biomater. Sci., 2015, 3(8), 1228-1235.
[67]
Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D.M.; Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol., 2010, 5(8), 602-606.
[68]
Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci., 2015, 16(4), 8070-8101.
[69]
Bharali, D.J.; Klejbor, I.; Stachowiak, E.K.; Dutta, P.; Roy, I.; Kaur, N.; Bergey, E.J.; Prasad, P.N.; Stachowiak, M.K. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11539-11544.
[70]
Wu, J.; Wang, C.; Sun, J.; Xue, Y. Neurotoxicity of silica nanoparticles: Brain localization and dopaminergic neurons damage pathways. ACS Nano, 2011, 5(6), 4476-4489.
[71]
Chen, L.; Watson, C.; Morsch, M.; Cole, N.J.; Chung, R.S.; Saunders, D.N.; Yerbury, J.J.; Vine, K.L. Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Front. Neurosci., 2017, 11, 476.
[72]
Li, S.D.; Li, J.H.; Wang, C.J.; Wang, Q.; Cader, M.Z.; Lu, J.; Evans, D.G.; Duan, X.; O’Hare, D. Cellular uptake and gene delivery using layered double hydroxide nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(1), 61-68.
[73]
Paul, W.; Sharma, C.P. Ceramic drug delivery: a perspective. J. Biomater. Appl., 2003, 17(4), 253-264.
[74]
Zensi, A.; Begley, D.; Pontikis, C.; Legros, C.; Mihoreanu, L.; Wagner, S.; Büchel, C.; von Briesen, H.; Kreuter, J. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release, 2009, 137(1), 78-86.
[75]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[76]
An, F.F.; Zhang, X.H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics, 2017, 7(15), 3667-3689.
[77]
Gao, X.; Wu, B.; Zhang, Q.; Chen, J.; Zhu, J.; Zhang, W.; Rong, Z.; Chen, H.; Jiang, X. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J. Control. Release, 2007, 121(3), 156-167.
[78]
Paka, G.D.; Ramassamy, C. Optimization of curcumin-loaded PEG-PLGA nanoparticles by GSH functionalization: Investigation of the internalization pathway in neuronal cells. Mol. Pharm., 2017, 14(1), 93-106.
[79]
Liu, Z.; Gao, X.; Kang, T.; Jiang, M.; Miao, D.; Gu, G.; Hu, Q.; Song, Q.; Yao, L.; Tu, Y.; Chen, H.; Jiang, X.; Chen, J. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug. Chem., 2013, 24(6), 997-1007.
[80]
Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: Study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol. Pharm., 2010, 7(3), 815-825.
[81]
Cellot, G.; Cilia, E.; Cipollone, S.; Rancic, V.; Sucapane, A.; Giordani, S.; Gambazzi, L.; Markram, H.; Grandolfo, M.; Scaini, D.; Gelain, F.; Casalis, L.; Prato, M.; Giugliano, M.; Ballerini, L. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol., 2009, 4(2), 126-133.
[82]
Mazzatenta, A.; Giugliano, M.; Campidelli, S.; Gambazzi, L.; Businaro, L.; Markram, H.; Prato, M.; Ballerini, L. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci., 2007, 27(26), 6931-6936.
[83]
Bareket-Keren, L.; Hanein, Y. Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits, 2013, 6, 122.
[84]
Fabbro, A.; Bosi, S.; Ballerini, L.; Prato, M. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks. ACS Chem. Neurosci., 2012, 3(8), 611-618.
[85]
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9(6), 674-679.
[86]
Pathak, S.; Cao, E.; Davidson, M.C.; Jin, S.; Silva, G.A. Quantum dot applications to neuroscience: new tools for probing neurons and glia. J. Neurosci., 2006, 26(7), 1893-1895.
[87]
Gomez, N.; Winter, J.O.; Shieh, F.; Saunders, A.E.; Korgel, B.A.; Schmidt, C.E. Challenges in quantum dot-neuron active interfacing. Talanta, 2005, 67(3), 462-471.
[88]
Cai, E.; Ge, P.; Lee, S.H.; Jeyifous, O.; Wang, Y.; Liu, Y.; Wilson, K.M.; Lim, S.J.; Baird, M.A.; Stone, J.E.; Lee, K.Y.; Davidson, M.W.; Chung, H.J.; Schulten, K.; Smith, A.M.; Green, W.N.; Selvin, P.R. Stable small quantum dots for synaptic receptor tracking on live neurons. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12484-12488.
[89]
Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev., 2013, 65(5), 703-718.
[90]
Vidal, F.; Guzman, L. Dendrimer nanocarriers drug action: Perspective for neuronal pharmacology. Neural Regen. Res., 2015, 10(7), 1029-1031.
[91]
Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[92]
Lamy, C.M.; Sallin, O.; Loussert, C.; Chatton, J.Y. Sodium sensing in neurons with a dendrimer-based nanoprobe. ACS Nano, 2012, 6(2), 1176-1187.
[93]
Lee, H.M.; Larson, D.R.; Lawrence, D.S. Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem. Biol., 2009, 4(6), 409-427.
[94]
Warther, D.; Gug, S.; Specht, A.; Bolze, F.; Nicoud, J.F.; Mourot, A.; Goeldner, M. Two-photon uncaging: New prospects in neuroscience and cellular biology. Bioorg. Med. Chem., 2010, 18(22), 7753-7758.
[95]
Pavlov, A.M.; Sapelkin, A.V.; Huang, X.; P’ng, K.M.Y.; Bushby, A.J.; Sukhorukov, G.B.; Skirtach, A.G. Neuron cells uptake of polymeric microcapsules and subsequent intracellular release. Macromol. Biosci., 2011, 11(6), 848-854.
[96]
Ohtsuki, T.; Kanzaki, S.; Nishimura, S.; Kunihiro, Y.; Sisido, M.; Watanabe, K. Phototriggered protein syntheses by using (7-diethylaminocoumarin-4-yl)methoxycarbonyl-caged aminoacyl tRNAs. Nat. Commun., 2016, 7, 12501.
[97]
Eder, A.; Bading, H. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: Somatic calcium increases generate nuclear calcium transients. BMC Neurosci., 2007, 8, 57.
[98]
Wang, S.S.H.; Augustine, G.J. Confocal imaging and local photolysis of caged compounds: Dual probes of synaptic function. Neuron, 1995, 15(4), 755-760.
[99]
Akiyama, H.; Kamiguchi, H. Phosphatidylinositol 3-kinase facilitates microtubule-dependent membrane transport for neuronal growth cone guidance. J. Biol. Chem., 2010, 285(53), 41740-41748.
[100]
Zheng, J.Q.; Poo, M.M. Calcium signaling in neuronal motility. Annu. Rev. Cell Dev. Biol., 2007, 23, 375-404.
[101]
Bollmann, J.H.; Sakmann, B. Control of synaptic strength and timing by the release-site Ca2+ signal. Nat. Neurosci., 2005, 8(4), 426-434.
[102]
Shoham, S.; O’Connor, D.H.; Sarkisov, D.V.; Wang, S.S.H. Rapid neurotransmitter uncaging in spatially defined patterns. Nat. Methods, 2005, 2(11), 837-843.
[103]
Szobota, S.; Isacoff, E.Y. Optical control of neuronal activity. Annu. Rev. Biophys., 2010, 39, 329-348.
[104]
Zemelman, B.V.; Nesnas, N.; Lee, G.A.; Miesenbock, G. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1352-1357.
[105]
Kaplan, J.H.; Forbush, B., III; Hoffman, J.F. Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry, 1978, 17(10), 1929-1935.
[106]
Fischer, T.; Rotermund, N.; Lohr, C.; Hirnet, D. P2Y1 receptor activation by photolysis of caged ATP enhances neuronal network activity in the developing olfactory bulb. Purinergic Signal., 2012, 8(2), 191-198.
[107]
Stuhrmann, B.; Jahnke, H.G.; Schmidt, M.; Jahn, K.; Betz, T.; Muller, K.; Rothermel, A.; Kas, J.; Robitzki, A.A. Versatile optical manipulation system for inspection, laser processing, and isolation of individual living cells. Rev. Sci. Instrum., 2006, 77(6), 063116.
[108]
Zhang, H.; Liu, K.K. Optical tweezers for single cells. J. R. Soc. Interface, 2008, 5(24), 671-690.
[109]
Palumbo, G.; Caruso, M.; Crescenzi, E.; Tecce, M.F.; Roberti, G.; Colasanti, A. Targeted gene transfer in eucaryotic cells by dye-assisted laser optoporation. J. Photochem. Photobiol. B, 1996, 36(1), 41-46.
[110]
Tao, W.; Wilkinson, J.; Stanbridge, E.J.; Berns, M.W. Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane. Proc. Natl. Acad. Sci. USA, 1987, 84(12), 4180-4184.
[111]
Surrey, T.; Elowitz, M.B.; Wolf, P.E.; Yang, F.; Nédélec, F.; Shokat, K.; Leibler, S. Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4293-4298.
[112]
Roy, P.; Rajfur, Z.; Pomorski, P.; Jacobson, K. Microscope-based techniques to study cell adhesion and migration. Nat. Cell Biol., 2002, 4(4), E91-E96.
[113]
Roy, P.; Rajfur, Z.; Jones, D.; Marriott, G.; Loew, L.; Jacobson, K. Local photorelease of caged thymosin beta4 in locomoting keratocytes causes cell turning. J. Cell Biol., 2001, 153(5), 1035-1048.
[114]
Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci., 2005, 8(9), 1263-1268.
[115]
Zhang, F.; Gradinaru, V.; Adamantidis, A.R.; Durand, R.; Airan, R.D.; de Lecea, L.; Deisseroth, K. Optogenetic interrogation of neural circuits: Technology for probing mammalian brain structures. Nat. Protoc., 2010, 5(3), 439-456.
[116]
Yizhar, O.; Fenno, L.E.; Davidson, T.J.; Mogri, M.; Deisseroth, K. Optogenetics in neural systems. Neuron, 2011, 71(1), 9-34.
[117]
Packer, A.M.; Roska, B.; Häusser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci., 2013, 16(7), 805-815.
[118]
Carter, M.E.; de Lecea, L. Optogenetic investigation of neural circuits in vivo. Trends Mol. Med., 2011, 17(4), 197-206.
[119]
Kravitz, A.V.; Kreitzer, A.C. Optogenetic manipulation of neural circuitry in vivo. Curr. Opin. Neurobiol., 2011, 21(3), 433-439.
[120]
Aravanis, A.M.; Wang, L.P.; Zhang, F.; Meltzer, L.A.; Mogri, M.Z.; Schneider, M.B.; Deisseroth, K. An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng., 2007, 4(3), S143-S156.
[121]
Crick, F.H.C. Thinking about the brain. Sci. Am., 1979, 241(3), 219-232.
[122]
Shah, S.; Liu, J.J.; Pasquale, N.; Lai, J.; McGowan, H.; Pang, Z.P.; Lee, K.B. Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale, 2015, 7(40), 16571-16577.
[123]
Jeong, J.W.; McCall, J.G.; Shin, G.; Zhang, Y.; Al-Hasani, R.; Kim, M.; Li, S.; Sim, J.Y.; Jang, K.I.; Shi, Y.; Hong, D.Y.; Liu, Y.; Schmitz, G.P.; Xia, L.; He, Z.; Gamble, P.; Ray, W.Z.; Huang, Y.; Bruchas, M.R.; Rogers, J.A. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell, 2015, 162(3), 662-674.
[124]
Ellis-Davies, G.C.R. Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat. Methods, 2007, 4(8), 619-628.
[125]
Leifer, A.M.; Fang-Yen, C.; Gershow, M.; Alkema, M.J.; Samuel, A.D. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat. Methods, 2011, 8(2), 147-152.
[126]
Byrne, L.C.; Khalid, F.; Lee, T.; Zin, E.A.; Greenberg, K.P.; Visel, M.; Schaffer, D.V.; Flannery, J.G. AAV-mediated, optogenetic ablation of Müller Glia leads to structural and functional changes in the mouse retina. PLoS One, 2013, 8(9), e76075.
[127]
Fenno, L.; Yizhar, O.; Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci., 2011, 34(1), 389-412.
[128]
Wu, X.; Zhang, Y.; Takle, K.; Bilsel, O.; Li, Z.; Lee, H.; Zhang, Z.; Li, D.; Fan, W.; Duan, C.; Chan, E.M.; Lois, C.; Xiang, Y.; Han, G. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano, 2016, 10(1), 1060-1066.
[129]
Canales, A.; Jia, X.; Froriep, U.P.; Koppes, R.A.; Tringides, C.M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y.; Anikeeva, P. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol., 2015, 33(3), 277-284.
[130]
Gradinaru, V.; Mogri, M.; Thompson, K.R.; Henderson, J.M.; Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science, 2009, 324(5925), 354-359.
[131]
Kravitz, A.V.; Freeze, B.S.; Parker, P.R.; Kay, K.; Thwin, M.T.; Deisseroth, K.; Kreitzer, A.C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 2010, 466(7306), 622-626.
[132]
Tønnesen, J.; Sørensen, A.T.; Deisseroth, K.; Lundberg, C.; Kokaia, M. Optogenetic control of epileptiform activity. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 12162-12167.
[133]
Paz, J.T.; Bryant, A.S.; Peng, K.; Fenno, L.; Yizhar, O.; Frankel, W.N.; Deisseroth, K.; Huguenard, J.R. A new mode of corticothalamic transmission revealed in the Gria4(-/-) model of absence epilepsy. Nat. Neurosci., 2011, 14(9), 1167-1173.
[134]
Busskamp, V.; Duebel, J.; Balya, D.; Fradot, M.; Viney, T.J.; Siegert, S.; Groner, A.C.; Cabuy, E.; Forster, V.; Seeliger, M.; Biel, M.; Humphries, P.; Paques, M.; Mohand-Said, S.; Trono, D.; Deisseroth, K.; Sahel, J.A.; Picaud, S.; Roska, B. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 2010, 329(5990), 413-417.
[135]
Busskamp, V.; Roska, B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr. Opin. Neurobiol., 2011, 21(6), 942-946.
[136]
Pagliardini, S.; Janczewski, W.A.; Tan, W.; Dickson, C.T.; Deisseroth, K.; Feldman, J.L. Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J. Neurosci., 2011, 31(8), 2895-2905.
[137]
Gourine, A.V.; Kasymov, V.; Marina, N.; Tang, F.; Figueiredo, M.F.; Lane, S.; Teschemacher, A.G.; Spyer, K.M.; Deisseroth, K.; Kasparov, S. Astrocytes control breathing through pH-dependent release of ATP. Science, 2010, 329(5991), 571-575.
[138]
Adamantidis, A.R.; Zhang, F.; Aravanis, A.M.; Deisseroth, K.; de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 2007, 450(7168), 420-424.
[139]
Ciaramitaro, P.; Mondelli, M.; Logullo, F.; Grimaldi, S.; Battiston, B.; Sard, A.; Scarinzi, C.; Migliaretti, G.; Faccani, G.; Cocito, D.; Neuropat, I.N.T. Traumatic peripheral nerve injuries: epidemiological findings, neuropathic pain and quality of life in 158 patients. J. Peripher. Nerv. Syst., 2010, 15(2), 120-127.
[140]
Lundborg, G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. J. Hand Surg. Am., 2000, 25(3), 391-414.
[141]
Campbell, W.W. Evaluation and management of peripheral nerve injury. Clin. Neurophysiol., 2008, 119(9), 1951-1965.
[142]
Park, S.; Koppes, R.A.; Froriep, U.P.; Jia, X.; Achyuta, A.K.; McLaughlin, B.L.; Anikeeva, P. Optogenetic control of nerve growth. Sci. Rep., 2015, 5, 9669.