Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Photo-triggered Drug Delivery Systems for Neuron-related Applications

Author(s): Wei Li, Jing Lin, Tianfu Wang* and Peng Huang*

Volume 26, Issue 8, 2019

Page: [1406 - 1422] Pages: 17

DOI: 10.2174/0929867325666180622121801

Price: $65

Abstract

The development of materials, chemistry and genetics has created a great number of systems for delivering antibiotics, neuropeptides or other drugs to neurons in neuroscience research, and has also provided important and powerful tools in neuron-related applications. Although these drug delivery systems can facilitate the advancement of neuroscience studies, they still have limited applications due to various drawbacks, such as difficulty in controlling delivery molecules or drugs to the target region, and trouble of releasing them in predictable manners. The combination of optics and drug delivery systems has great potentials to address these issues and deliver molecules or drugs to the nervous system with extraordinary spatiotemporal selectivity triggered by light. In this review, we will introduce the development of photo-triggered drug delivery systems in neuroscience research and their neuron-related applications including regulating neural activities, treating neural diseases and inducing nerve regenerations.

Keywords: Photo-triggered drug delivery systems, neuron, microfluidic system, hydrogel, nanoneedles, liposome, optical tweezer, optogenetics.

[1]
Taylor, A.M.; Blurton-Jones, M.; Rhee, S.W.; Cribbs, D.H.; Cotman, C.W.; Jeon, N.L. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods, 2005, 2(8), 599-605.
[2]
Shi, P.; Nedelec, S.; Wichterle, H.; Kam, L.C. Combined microfluidics/protein patterning platform for pharmacological interrogation of axon pathfinding. Lab Chip, 2010, 10(8), 1005-1010.
[3]
Taylor, A.M.; Dieterich, D.C.; Ito, H.T.; Kim, S.A.; Schuman, E.M. Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron, 2010, 66(1), 57-68.
[4]
Song, H.L.; Shim, S.; Kim, D.H.; Won, S.H.; Joo, S.; Kim, S.; Jeon, N.L.; Yoon, S.Y. β-Amyloid is transmitted via neuronal connections along axonal membranes. Ann. Neurol., 2014, 75(1), 88-97.
[5]
Aurand, E.R.; Lampe, K.J.; Bjugstad, K.B. Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci. Res., 2012, 72(3), 199-213.
[6]
Katz, J.S.; Burdick, J.A. Hydrogel mediated delivery of trophic factors for neural repair. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(1), 128-139.
[7]
Wang, Y.; Yang, Y.; Yan, L.; Kwok, S.Y.; Li, W.; Wang, Z.; Zhu, X.; Zhu, G.; Zhang, W.; Chen, X.; Shi, P. Poking cells for efficient vector-free intracellular delivery. Nat. Commun., 2014, 5, 4466.
[8]
Chen, X.; Zhu, G.; Yang, Y.; Wang, B.; Yan, L.; Zhang, K.Y.; Lo, K.K.W.; Zhang, W. A diamond nanoneedle array for potential high-throughput intracellular delivery. Adv. Healthc. Mater., 2013, 2(8), 1103-1107.
[9]
Li, W.; Xu, Z.; Xu, B.; Chan, C.Y.; Lin, X.; Wang, Y.; Chen, G.; Wang, Z.; Yuan, Q.; Zhu, G.; Sun, H.; Wu, W.; Shi, P. Investigation of the subcellular neurotoxicity of amyloid-beta using a device integrating microfluidic perfusion and chemotactic guidance. Adv. Healthc. Mater., 2017, 6(7), 1600895.
[10]
Lampe, K.J.; Bjugstad, K.B.; Mahoney, M.J. Impact of degradable macromer content in a poly(ethylene glycol) hydrogel on neural cell metabolic activity, redox state, proliferation, and differentiation. Tissue Eng. Part A, 2010, 16(6), 1857-1866.
[11]
Burdick, J.A.; Ward, M.; Liang, E.; Young, M.J.; Langer, R. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials, 2006, 27(3), 452-459.
[12]
Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J. Biomed. Sci., 2009, 16, 108.
[13]
Freudenberg, U.; Hermann, A.; Welzel, P.B.; Stirl, K.; Schwarz, S.C.; Grimmer, M.; Zieris, A.; Panyanuwat, W.; Zschoche, S.; Meinhold, D.; Storch, A.; Werner, C. A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials, 2009, 30(28), 5049-5060.
[14]
Nerbonne, J.M. Caged compounds: Tools for illuminating neuronal responses and connections. Curr. Opin. Neurobiol., 1996, 6(3), 379-386.
[15]
Lima, S.Q.; Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 2005, 121(1), 141-152.
[16]
Mayer, G.; Heckel, A. Biologically active molecules with a “light switch”. Angew. Chem. Int. Ed. Engl., 2006, 45(30), 4900-4921.
[17]
Wong, Y.; Markham, K.; Xu, Z.P.; Chen, M.; Max Lu, G.Q.; Bartlett, P.F.; Cooper, H.M. Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles. Biomaterials, 2010, 31(33), 8770-8779.
[18]
D’Este, E.; Baj, G.; Beuzer, P.; Ferrari, E.; Pinato, G.; Tongiorgi, E.; Cojoc, D. Use of optical tweezers technology for long-term, focal stimulation of specific subcellular neuronal compartments. Integr. Biol., 2011, 3(5), 568-577.
[19]
Pinato, G.; Raffaelli, T.; D’Este, E.; Tavano, F.; Cojoc, D. Optical delivery of liposome encapsulated chemical stimuli to neuronal cells. J. Biomed. Opt., 2011, 16(9), 095001.
[20]
Takahashi, H.; Sakurai, T.; Sakai, H.; Bakkum, D.J.; Suzurikawa, J.; Kanzaki, R. Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2. Biosystems, 2012, 107(2), 106-112.
[21]
Edupuganti, O.P.; Ovsepian, S.V.; Wang, J.; Zurawski, T.H.; Schmidt, J.J.; Smith, L.; Lawrence, G.W.; Dolly, J.O. Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. FEBS J., 2012, 279(14), 2555-2567.
[22]
Li, W.; Luo, R.; Lin, X.; Jadhav, A.D.; Zhang, Z.; Yan, L.; Chan, C.Y.; Chen, X.; He, J.; Chen, C.H.; Shi, P. Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials, 2015, 65, 76-85.
[23]
Luo, R.C.; Ranjan, S.; Zhang, Y.; Chen, C.H. Near-infrared photothermal activation of microgels incorporating polypyrrole nanotransducers through droplet microfluidics. Chem. Commun. (Camb.), 2013, 49(72), 7887-7889.
[24]
Luo, Y.; Shoichet, M.S. Light-activated immobilization of biomolecules to agarose hydrogels for controlled cellular response. Biomacromolecules, 2004, 5(6), 2315-2323.
[25]
Kohman, R.E.; Cha, S.S.; Man, H.Y.; Han, X. Light-triggered release of bioactive molecules from DNA nanostructures. Nano Lett., 2016, 16(4), 2781-2785.
[26]
Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem., 2010, 79, 65-87.
[27]
Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc., 2014, 136(32), 11198-11211.
[28]
Callaway, E.M.; Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA, 1993, 90(16), 7661-7665.
[29]
Tsien, R.Y.; Zucker, R.S. Control of cytoplasmic calcium with photolabile tetracarboxylate 2-nitrobenzhydrol chelators. Biophys. J., 1986, 50(5), 843-853.
[30]
Amatrudo, J.M.; Olson, J.P.; Lur, G.; Chiu, C.Q.; Higley, M.J.; Ellis-Davies, G.C.R. Wavelength-selective one- and two-photon uncaging of GABA. ACS Chem. Neurosci., 2014, 5(1), 64-70.
[31]
Kantevari, S.; Matsuzaki, M.; Kanemoto, Y.; Kasai, H.; Ellis-Davies, G.C. Two-color, two-photon uncaging of glutamate and GABA. Nat. Methods, 2010, 7(2), 123-125.
[32]
Nadler, A.; Yushchenko, D.A.; Müller, R.; Stein, F.; Feng, S.; Mulle, C.; Carta, M.; Schultz, C. Exclusive photorelease of signalling lipids at the plasma membrane. Nat. Commun., 2015, 6, 10056.
[33]
Araya, R.; Andino-Pavlovsky, V.; Yuste, R.; Etchenique, R. Two-photon optical interrogation of individual dendritic spines with caged dopamine. ACS Chem. Neurosci., 2013, 4(8), 1163-1167.
[34]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[35]
Chen, W.; Deng, W.; Goldys, E.M. Light-triggerable liposomes for enhanced endolysosomal escape and gene silencing in PC12 cells. Mol. Ther-Nucl. Mol. Ther. Nucleic Acids, 2017, 7, 366-377.
[36]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[37]
Moussa, H.G.; Martins, A.M.; Husseini, G.A. Review on triggered liposomal drug delivery with a focus on ultrasound. Curr. Cancer Drug Targets, 2015, 15(4), 282-313.
[38]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[39]
Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev., 2015, 115(19), 10938-10966.
[40]
Pinato, G.; Lien, L.T.; D’Este, E.; Torre, V.; Cojoc, D. Neuronal chemotaxis by optically manipulated liposomes. J. Eur. Opt. Soc-Rapid, 2011, 6, 11042.
[41]
Sun, B.; Chiu, D.T. Spatially and temporally resolved delivery of stimuli to single cells. J. Am. Chem. Soc., 2003, 125(13), 3702-3703.
[42]
Yokota, M.; Tani, E.; Tsubuki, S.; Yamaura, I.; Nakagaki, I.; Hori, S.; Saido, T.C. Calpain inhibitor entrapped in liposome rescues ischemic neuronal damage. Brain Res., 1999, 819(1-2), 8-14.
[43]
Zhang, Z.N.; Freitas, B.C.; Qian, H.; Lux, J.; Acab, A.; Trujillo, C.A.; Herai, R.H.; Nguyen Huu, V.A.; Wen, J.H.; Joshi-Barr, S.; Karpiak, J.V.; Engler, A.J.; Fu, X.D.; Muotri, A.R.; Almutairi, A. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc. Natl. Acad. Sci. USA, 2016, 113(12), 3185-3190.
[44]
Giri, T.K.; Thakur, A.; Alexander, A. Ajazuddin; Badwaik, H.; Tripathi, D.K., Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm. Sin. B, 2012, 2(5), 439-449.
[45]
Del Valle, L.J.; Díaz, A.; Puiggalí, J. Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels, 2017, 3(3), 27-55.
[46]
McKinnon, D.D.; Brown, T.E.; Kyburz, K.A.; Kiyotake, E.; Anseth, K.S. Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. Biomacromolecules, 2014, 15(7), 2808-2816.
[47]
Laganà, A.; Venditti, I.; Fratoddi, I.; Capriotti, A.L.; Caruso, G.; Battocchio, C.; Polzonetti, G.; Acconcia, F.; Marino, M.; Russo, M.V. Nanostructured functional co-polymers bioconjugate integrin inhibitors. J. Colloid Interface Sci., 2011, 361(2), 465-471.
[48]
Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014(15), 869269.
[49]
Neely, A.; Perry, C.; Varisli, B.; Singh, A.K.; Arbneshi, T.; Senapati, D.; Kalluri, J.R.; Ray, P.C. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano, 2009, 3(9), 2834-2840.
[50]
Carling, C.J.; Viger, M.L.; Huu, V.A.N.; Garcia, A.V.; Almutairi, A. In vivo visible light-triggered drug release from an implanted depot. Chem. Sci. (Camb.), 2015, 6(1), 335-341.
[51]
Yang, Y.; Mu, J.; Xing, B. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(2), 1-19.
[52]
D’Amato, R.; Venditti, I.; Russo, M.V.; Falconieri, M. Growth control and long-range self-assembly of poly(methyl methacrylate) nanospheres. J. Appl. Polym. Sci., 2006, 102(5), 4493-4499.
[53]
Sahni, J.K.; Doggui, S.; Ali, J.; Baboota, S.; Dao, L.; Ramassamy, C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J. Control. Release, 2011, 152(2), 208-231.
[54]
Davis, S.S. Biomedical applications of nanotechnology-implications for drug targeting and gene therapy. Trends Biotechnol., 1997, 15(6), 217-224.
[55]
Carvalho-de-Souza, J.L.; Treger, J.S.; Dang, B.; Kent, S.B.H.; Pepperberg, D.R.; Bezanilla, F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron, 2015, 86(1), 207-217.
[56]
Rossi, A.; Donati, S.; Fontana, L.; Porcaro, F.; Battocchio, C.; Proietti, E.; Venditti, I.; Bracci, L.; Fratoddi, I. Negatively charged gold nanoparticles as a dexamethasone carrier: stability in biological media and bioactivity assessment in vitro. Rsc Adv., 2016, 6(101), 99016-99022.
[57]
Campardelli, R.; Della Porta, G.; Gomez, L.; Irusta, S.; Reverchon, E.; Santamaria, J. Au-PLA nanocomposites for photothermally controlled drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(4), 409-417.
[58]
Venditti, I.; Hassanein, T.F.; Fratoddi, I.; Fontana, L.; Battocchio, C.; Rinaldi, F.; Carafa, M.; Marianecci, C.; Diociaiuti, M.; Agostinelli, E.; Cametti, C.; Russo, M.V. Bioconjugation of gold-polymer core-shell nanoparticles with bovine serum amine oxidase for biomedical applications. Colloids Surf. B Biointerfaces, 2015, 134, 314-321.
[59]
Paviolo, C.; Stoddart, P.R. Gold nanoparticles for modulating neuronal behavior. Nanomaterials (Basel), 2017, 7(4), 92-106.
[60]
Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol., 1982, 99(2), 237-247.
[61]
Kallenbach, N.R.; Ma, R.I.; Seeman, N.C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature, 1983, 305(5937), 829-831.
[62]
Seeman, N.C. DNA in a material world. Nature, 2003, 421(6921), 427-431.
[63]
Jones, M.R.; Seeman, N.C.; Mirkin, C.A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science, 2015, 347(6224), 1260901.
[64]
Jung, S.; Bang, M.; Kim, B.S.; Lee, S.; Kotov, N.A.; Kim, B.; Jeon, D. Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One, 2014, 9(3), e91360.
[65]
Alon, N.; Miroshnikov, Y.; Perkas, N.; Nissan, I.; Gedanken, A.; Shefi, O. Substrates coated with silver nanoparticles as a neuronal regenerative material. Int. J. Nanomedicine, 2014, 9(Suppl. 1), 23-31.
[66]
Saito, A.; Nakashima, Y.; Shimba, K.; Takayama, Y.; Kotani, K.; Jimbo, Y. Modulation of neuronal network activity using magnetic nanoparticle-based astrocytic network integration. Biomater. Sci., 2015, 3(8), 1228-1235.
[67]
Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D.M.; Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol., 2010, 5(8), 602-606.
[68]
Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci., 2015, 16(4), 8070-8101.
[69]
Bharali, D.J.; Klejbor, I.; Stachowiak, E.K.; Dutta, P.; Roy, I.; Kaur, N.; Bergey, E.J.; Prasad, P.N.; Stachowiak, M.K. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11539-11544.
[70]
Wu, J.; Wang, C.; Sun, J.; Xue, Y. Neurotoxicity of silica nanoparticles: Brain localization and dopaminergic neurons damage pathways. ACS Nano, 2011, 5(6), 4476-4489.
[71]
Chen, L.; Watson, C.; Morsch, M.; Cole, N.J.; Chung, R.S.; Saunders, D.N.; Yerbury, J.J.; Vine, K.L. Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Front. Neurosci., 2017, 11, 476.
[72]
Li, S.D.; Li, J.H.; Wang, C.J.; Wang, Q.; Cader, M.Z.; Lu, J.; Evans, D.G.; Duan, X.; O’Hare, D. Cellular uptake and gene delivery using layered double hydroxide nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(1), 61-68.
[73]
Paul, W.; Sharma, C.P. Ceramic drug delivery: a perspective. J. Biomater. Appl., 2003, 17(4), 253-264.
[74]
Zensi, A.; Begley, D.; Pontikis, C.; Legros, C.; Mihoreanu, L.; Wagner, S.; Büchel, C.; von Briesen, H.; Kreuter, J. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release, 2009, 137(1), 78-86.
[75]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[76]
An, F.F.; Zhang, X.H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics, 2017, 7(15), 3667-3689.
[77]
Gao, X.; Wu, B.; Zhang, Q.; Chen, J.; Zhu, J.; Zhang, W.; Rong, Z.; Chen, H.; Jiang, X. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J. Control. Release, 2007, 121(3), 156-167.
[78]
Paka, G.D.; Ramassamy, C. Optimization of curcumin-loaded PEG-PLGA nanoparticles by GSH functionalization: Investigation of the internalization pathway in neuronal cells. Mol. Pharm., 2017, 14(1), 93-106.
[79]
Liu, Z.; Gao, X.; Kang, T.; Jiang, M.; Miao, D.; Gu, G.; Hu, Q.; Song, Q.; Yao, L.; Tu, Y.; Chen, H.; Jiang, X.; Chen, J. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug. Chem., 2013, 24(6), 997-1007.
[80]
Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: Study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol. Pharm., 2010, 7(3), 815-825.
[81]
Cellot, G.; Cilia, E.; Cipollone, S.; Rancic, V.; Sucapane, A.; Giordani, S.; Gambazzi, L.; Markram, H.; Grandolfo, M.; Scaini, D.; Gelain, F.; Casalis, L.; Prato, M.; Giugliano, M.; Ballerini, L. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol., 2009, 4(2), 126-133.
[82]
Mazzatenta, A.; Giugliano, M.; Campidelli, S.; Gambazzi, L.; Businaro, L.; Markram, H.; Prato, M.; Ballerini, L. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci., 2007, 27(26), 6931-6936.
[83]
Bareket-Keren, L.; Hanein, Y. Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits, 2013, 6, 122.
[84]
Fabbro, A.; Bosi, S.; Ballerini, L.; Prato, M. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks. ACS Chem. Neurosci., 2012, 3(8), 611-618.
[85]
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9(6), 674-679.
[86]
Pathak, S.; Cao, E.; Davidson, M.C.; Jin, S.; Silva, G.A. Quantum dot applications to neuroscience: new tools for probing neurons and glia. J. Neurosci., 2006, 26(7), 1893-1895.
[87]
Gomez, N.; Winter, J.O.; Shieh, F.; Saunders, A.E.; Korgel, B.A.; Schmidt, C.E. Challenges in quantum dot-neuron active interfacing. Talanta, 2005, 67(3), 462-471.
[88]
Cai, E.; Ge, P.; Lee, S.H.; Jeyifous, O.; Wang, Y.; Liu, Y.; Wilson, K.M.; Lim, S.J.; Baird, M.A.; Stone, J.E.; Lee, K.Y.; Davidson, M.W.; Chung, H.J.; Schulten, K.; Smith, A.M.; Green, W.N.; Selvin, P.R. Stable small quantum dots for synaptic receptor tracking on live neurons. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12484-12488.
[89]
Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev., 2013, 65(5), 703-718.
[90]
Vidal, F.; Guzman, L. Dendrimer nanocarriers drug action: Perspective for neuronal pharmacology. Neural Regen. Res., 2015, 10(7), 1029-1031.
[91]
Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[92]
Lamy, C.M.; Sallin, O.; Loussert, C.; Chatton, J.Y. Sodium sensing in neurons with a dendrimer-based nanoprobe. ACS Nano, 2012, 6(2), 1176-1187.
[93]
Lee, H.M.; Larson, D.R.; Lawrence, D.S. Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem. Biol., 2009, 4(6), 409-427.
[94]
Warther, D.; Gug, S.; Specht, A.; Bolze, F.; Nicoud, J.F.; Mourot, A.; Goeldner, M. Two-photon uncaging: New prospects in neuroscience and cellular biology. Bioorg. Med. Chem., 2010, 18(22), 7753-7758.
[95]
Pavlov, A.M.; Sapelkin, A.V.; Huang, X.; P’ng, K.M.Y.; Bushby, A.J.; Sukhorukov, G.B.; Skirtach, A.G. Neuron cells uptake of polymeric microcapsules and subsequent intracellular release. Macromol. Biosci., 2011, 11(6), 848-854.
[96]
Ohtsuki, T.; Kanzaki, S.; Nishimura, S.; Kunihiro, Y.; Sisido, M.; Watanabe, K. Phototriggered protein syntheses by using (7-diethylaminocoumarin-4-yl)methoxycarbonyl-caged aminoacyl tRNAs. Nat. Commun., 2016, 7, 12501.
[97]
Eder, A.; Bading, H. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: Somatic calcium increases generate nuclear calcium transients. BMC Neurosci., 2007, 8, 57.
[98]
Wang, S.S.H.; Augustine, G.J. Confocal imaging and local photolysis of caged compounds: Dual probes of synaptic function. Neuron, 1995, 15(4), 755-760.
[99]
Akiyama, H.; Kamiguchi, H. Phosphatidylinositol 3-kinase facilitates microtubule-dependent membrane transport for neuronal growth cone guidance. J. Biol. Chem., 2010, 285(53), 41740-41748.
[100]
Zheng, J.Q.; Poo, M.M. Calcium signaling in neuronal motility. Annu. Rev. Cell Dev. Biol., 2007, 23, 375-404.
[101]
Bollmann, J.H.; Sakmann, B. Control of synaptic strength and timing by the release-site Ca2+ signal. Nat. Neurosci., 2005, 8(4), 426-434.
[102]
Shoham, S.; O’Connor, D.H.; Sarkisov, D.V.; Wang, S.S.H. Rapid neurotransmitter uncaging in spatially defined patterns. Nat. Methods, 2005, 2(11), 837-843.
[103]
Szobota, S.; Isacoff, E.Y. Optical control of neuronal activity. Annu. Rev. Biophys., 2010, 39, 329-348.
[104]
Zemelman, B.V.; Nesnas, N.; Lee, G.A.; Miesenbock, G. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1352-1357.
[105]
Kaplan, J.H.; Forbush, B., III; Hoffman, J.F. Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry, 1978, 17(10), 1929-1935.
[106]
Fischer, T.; Rotermund, N.; Lohr, C.; Hirnet, D. P2Y1 receptor activation by photolysis of caged ATP enhances neuronal network activity in the developing olfactory bulb. Purinergic Signal., 2012, 8(2), 191-198.
[107]
Stuhrmann, B.; Jahnke, H.G.; Schmidt, M.; Jahn, K.; Betz, T.; Muller, K.; Rothermel, A.; Kas, J.; Robitzki, A.A. Versatile optical manipulation system for inspection, laser processing, and isolation of individual living cells. Rev. Sci. Instrum., 2006, 77(6), 063116.
[108]
Zhang, H.; Liu, K.K. Optical tweezers for single cells. J. R. Soc. Interface, 2008, 5(24), 671-690.
[109]
Palumbo, G.; Caruso, M.; Crescenzi, E.; Tecce, M.F.; Roberti, G.; Colasanti, A. Targeted gene transfer in eucaryotic cells by dye-assisted laser optoporation. J. Photochem. Photobiol. B, 1996, 36(1), 41-46.
[110]
Tao, W.; Wilkinson, J.; Stanbridge, E.J.; Berns, M.W. Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane. Proc. Natl. Acad. Sci. USA, 1987, 84(12), 4180-4184.
[111]
Surrey, T.; Elowitz, M.B.; Wolf, P.E.; Yang, F.; Nédélec, F.; Shokat, K.; Leibler, S. Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4293-4298.
[112]
Roy, P.; Rajfur, Z.; Pomorski, P.; Jacobson, K. Microscope-based techniques to study cell adhesion and migration. Nat. Cell Biol., 2002, 4(4), E91-E96.
[113]
Roy, P.; Rajfur, Z.; Jones, D.; Marriott, G.; Loew, L.; Jacobson, K. Local photorelease of caged thymosin beta4 in locomoting keratocytes causes cell turning. J. Cell Biol., 2001, 153(5), 1035-1048.
[114]
Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci., 2005, 8(9), 1263-1268.
[115]
Zhang, F.; Gradinaru, V.; Adamantidis, A.R.; Durand, R.; Airan, R.D.; de Lecea, L.; Deisseroth, K. Optogenetic interrogation of neural circuits: Technology for probing mammalian brain structures. Nat. Protoc., 2010, 5(3), 439-456.
[116]
Yizhar, O.; Fenno, L.E.; Davidson, T.J.; Mogri, M.; Deisseroth, K. Optogenetics in neural systems. Neuron, 2011, 71(1), 9-34.
[117]
Packer, A.M.; Roska, B.; Häusser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci., 2013, 16(7), 805-815.
[118]
Carter, M.E.; de Lecea, L. Optogenetic investigation of neural circuits in vivo. Trends Mol. Med., 2011, 17(4), 197-206.
[119]
Kravitz, A.V.; Kreitzer, A.C. Optogenetic manipulation of neural circuitry in vivo. Curr. Opin. Neurobiol., 2011, 21(3), 433-439.
[120]
Aravanis, A.M.; Wang, L.P.; Zhang, F.; Meltzer, L.A.; Mogri, M.Z.; Schneider, M.B.; Deisseroth, K. An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng., 2007, 4(3), S143-S156.
[121]
Crick, F.H.C. Thinking about the brain. Sci. Am., 1979, 241(3), 219-232.
[122]
Shah, S.; Liu, J.J.; Pasquale, N.; Lai, J.; McGowan, H.; Pang, Z.P.; Lee, K.B. Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale, 2015, 7(40), 16571-16577.
[123]
Jeong, J.W.; McCall, J.G.; Shin, G.; Zhang, Y.; Al-Hasani, R.; Kim, M.; Li, S.; Sim, J.Y.; Jang, K.I.; Shi, Y.; Hong, D.Y.; Liu, Y.; Schmitz, G.P.; Xia, L.; He, Z.; Gamble, P.; Ray, W.Z.; Huang, Y.; Bruchas, M.R.; Rogers, J.A. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell, 2015, 162(3), 662-674.
[124]
Ellis-Davies, G.C.R. Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat. Methods, 2007, 4(8), 619-628.
[125]
Leifer, A.M.; Fang-Yen, C.; Gershow, M.; Alkema, M.J.; Samuel, A.D. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat. Methods, 2011, 8(2), 147-152.
[126]
Byrne, L.C.; Khalid, F.; Lee, T.; Zin, E.A.; Greenberg, K.P.; Visel, M.; Schaffer, D.V.; Flannery, J.G. AAV-mediated, optogenetic ablation of Müller Glia leads to structural and functional changes in the mouse retina. PLoS One, 2013, 8(9), e76075.
[127]
Fenno, L.; Yizhar, O.; Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci., 2011, 34(1), 389-412.
[128]
Wu, X.; Zhang, Y.; Takle, K.; Bilsel, O.; Li, Z.; Lee, H.; Zhang, Z.; Li, D.; Fan, W.; Duan, C.; Chan, E.M.; Lois, C.; Xiang, Y.; Han, G. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano, 2016, 10(1), 1060-1066.
[129]
Canales, A.; Jia, X.; Froriep, U.P.; Koppes, R.A.; Tringides, C.M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y.; Anikeeva, P. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol., 2015, 33(3), 277-284.
[130]
Gradinaru, V.; Mogri, M.; Thompson, K.R.; Henderson, J.M.; Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science, 2009, 324(5925), 354-359.
[131]
Kravitz, A.V.; Freeze, B.S.; Parker, P.R.; Kay, K.; Thwin, M.T.; Deisseroth, K.; Kreitzer, A.C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 2010, 466(7306), 622-626.
[132]
Tønnesen, J.; Sørensen, A.T.; Deisseroth, K.; Lundberg, C.; Kokaia, M. Optogenetic control of epileptiform activity. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 12162-12167.
[133]
Paz, J.T.; Bryant, A.S.; Peng, K.; Fenno, L.; Yizhar, O.; Frankel, W.N.; Deisseroth, K.; Huguenard, J.R. A new mode of corticothalamic transmission revealed in the Gria4(-/-) model of absence epilepsy. Nat. Neurosci., 2011, 14(9), 1167-1173.
[134]
Busskamp, V.; Duebel, J.; Balya, D.; Fradot, M.; Viney, T.J.; Siegert, S.; Groner, A.C.; Cabuy, E.; Forster, V.; Seeliger, M.; Biel, M.; Humphries, P.; Paques, M.; Mohand-Said, S.; Trono, D.; Deisseroth, K.; Sahel, J.A.; Picaud, S.; Roska, B. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 2010, 329(5990), 413-417.
[135]
Busskamp, V.; Roska, B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr. Opin. Neurobiol., 2011, 21(6), 942-946.
[136]
Pagliardini, S.; Janczewski, W.A.; Tan, W.; Dickson, C.T.; Deisseroth, K.; Feldman, J.L. Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J. Neurosci., 2011, 31(8), 2895-2905.
[137]
Gourine, A.V.; Kasymov, V.; Marina, N.; Tang, F.; Figueiredo, M.F.; Lane, S.; Teschemacher, A.G.; Spyer, K.M.; Deisseroth, K.; Kasparov, S. Astrocytes control breathing through pH-dependent release of ATP. Science, 2010, 329(5991), 571-575.
[138]
Adamantidis, A.R.; Zhang, F.; Aravanis, A.M.; Deisseroth, K.; de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 2007, 450(7168), 420-424.
[139]
Ciaramitaro, P.; Mondelli, M.; Logullo, F.; Grimaldi, S.; Battiston, B.; Sard, A.; Scarinzi, C.; Migliaretti, G.; Faccani, G.; Cocito, D.; Neuropat, I.N.T. Traumatic peripheral nerve injuries: epidemiological findings, neuropathic pain and quality of life in 158 patients. J. Peripher. Nerv. Syst., 2010, 15(2), 120-127.
[140]
Lundborg, G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. J. Hand Surg. Am., 2000, 25(3), 391-414.
[141]
Campbell, W.W. Evaluation and management of peripheral nerve injury. Clin. Neurophysiol., 2008, 119(9), 1951-1965.
[142]
Park, S.; Koppes, R.A.; Froriep, U.P.; Jia, X.; Achyuta, A.K.; McLaughlin, B.L.; Anikeeva, P. Optogenetic control of nerve growth. Sci. Rep., 2015, 5, 9669.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy