[1]
Rustom, I.S.Y. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chem., 1997, 59, 57-67.
[2]
Torres, A.M.; Barros, G.G.; Palacios, S.A.; Chulze, S.N.; Battilani, P. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res. Int., 2014, 62, 11-19.
[3]
Piermarini, S.; Micheli, L.; Ammida, N.; Palleschi, G.; Moscone, D. Electrochemical immunosensor array using a 96-well screen-printed microplate for Aflatoxin B1 detection. Biosens. Bioelectron., 2007, 22, 1434-1440.
[4]
Wood, G.E. Mycotoxins in foods and feeds in the United States. J.
Anim. Sci., 1992, 12(70), 3941-3949.
[5]
Lu, J.J.; Su, L.; Wang, D.J. Study on aflatoxins in edible vegetable oil of some provinces. Chinese J. Pub. Health Eng., 2014, 13, 34-35.
[6]
Diao, E.J.; Shen, X.Z.; Zhang, Z.; Ji, N.; Ma, W.W.; Dong, H.Z. Safety evaluation of aflatoxin B1 in peanut oil after ultraviolet irradiation detoxification in a photodegradation reactor. Int. J. Food Sci. Technol., 2015, 50, 41-47.
[7]
Liu, R.J.; Wang, R.Q.; Lu, J.; Chang, M.; Jin, Q.Z.; Du, Z.B.; Wang, S.S.; Li, Q.; Wang, X.G. Degradation of AFB1 in aqueous medium by electron beam irradiation: Kinetics, pathway and toxicology. Food Control, 2016, 66, 151-157.
[8]
Xu, D.; Wang, H.; Zhang, Y.; Yang, Z.; Sun, X.L. Inhibition of non-toxigenic Aspergillus niger FS10 isolated from Chinese fermented soybean on growth and aflatoxin B1 production by Aspergillus flavus. Food Control, 2013, 32, 359-365.
[9]
Falguera, V.; Pagán, J.; Garza, S.; Garvín, A.; Ibarz, A. Ultraviolet processing of liquid food: A review: Part 2: Effects on microorganisms and on food components and properties. Food Res. Int., 2011, 44, 1580-1588.
[10]
Pozzo, R.L.; Baltanas, M.A.; Cassano, A.E. Supported titanium oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 1997, 39, 219-231.
[11]
Faustini, M.; Nicole, L.; Boissiere, C.; Innocenzi, P.; Sanchez, C.; Grosso, D. Hydrophobic, antireflective, self-cleaning, and antifogging sol−gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater., 2010, 22(15), 4406-4413.
[12]
Wang, Z.; Yao, N.; Hu, X. Single material TiO2 double layers antireflection coating with photocatalytic property prepared by magnetron sputtering technique. Vacuum, 2014, 108, 20-26.
[13]
Bouarioua, A.; Zerdaoui, M. Photocatalytic activities of TiO2 layers immobilized on glass substrates by dip-coating technique toward the decolorization of methyl orange as a model organic pollutant. J. Environ. Chem. Eng., 2017, 5, 1565-1574.
[14]
Hay, S.O.; Obee, T.; Luo, Z.; Jiang, T.; Meng, Y.T.; He, J.K.; Murphy, C.S.; Suit, S. The viability of photocatalysis for air purification. Molecules, 2015, 20(1), 1319-1356.
[15]
Mor, G.; Varghese, O.K.; Paulose, M.; Grimes, G.A. A self-cleaning, room-temperature titania- nanotube hydrogen gas sensor. Sens. Lett., 2003, 1, 42-46.
[16]
Crossland, E.J.; Noel, N.; Sivaram, V.; Leitens, T.; Webber, J.A.A.; Snaith, H.J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 2013, 495, 215-219.
[17]
Samsudin, E.M.; Hamid, S.B.A. Effect of band gap engineering in anionic-doped TiO2 photocatalyst. Appl. Surf. Sci., 2017, 391, 326-336.
[18]
Sun, H.; Wang, S.; Ang, H.M.; Tadé, M.O.; Li, Q. Halogen element modified titanium dioxide for visible light photocatalysis. Chem. Eng. J., 2010, 162, 437-447.
[19]
Sun, W.J.; Li, J.; Yao, G.P.; Jiang, M.; Zhang, F.X. Efficient photo-degradation of 4-nitrophenol by using new CuPp-TiO2 photocatalyst under visible light irradiation. Catal. Commun., 2011, 16, 90-93.
[20]
Livraghi, S.; Czoska, A.M.; Paganini, M.C.; Giamello, E. Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile). J. Solid State Chem., 2009, 182, 160-164.
[21]
Ho, W.; Yu, J.C.; Lee, S. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem., 2006, 179, 1171-1176.
[22]
Chavadej, S.; Phuaphromyod, P.; Gulari, E.; Rangsunvigt, P.; Sreethawong, T. Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique. Chem. Eng. J., 2008, 137, 489-495.
[23]
Siuzdak, K.; Szkoda, M.; Sawczak, M.; Lisowska-Oleksiak, A. Novel nitrogen precursors for electrochemically driven doping of titania nanotubes exhibiting enhanced photoactivity. New J. Chem., 2015, 39, 2741-2751.
[24]
Tang, X.; Li, D. Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J. Phys. Chem. C, 2008, 112(14), 5405-5409.
[25]
Su, Y.; Xiao, Y.; Fu, X.; Deng, Y.R.; Zhang, F.B. Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes. Mater. Res. Bull., 2009, 44, 2169-2173.
[26]
Huang, D.G.; Liao, S.J.; Liu, J.M.; Dang, Z.; Petric, L. Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method. J. Photochem. Photobiol., 2006, 184, 282-288.
[27]
Hong, X.T.; Luo, Z.P.; Batteas, J.D. Enhanced visible-light absorption and dopant distribution of iodine-TiO2 nanoparticles synthesized by a new facile two-step hydrothermal method. J. Solid State Chem., 2011, 184, 2244-2249.
[28]
Bouarioua, A.; Zerdaoui, M. Photocatalytic activities of TiO2 layers immobilized on glass substrates by dip-coating technique toward the decolorization of methyl orange as a model organic pollutant. J. Environ. Chem. Eng., 2017, 5, 1565-1574.
[29]
Noorjahan, M.; Reddy, M.P.; Kumari, V.D.; Lavédrine, B.; Boule, P.; Subrahmanyam, M. Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions. J. Photochem. Photobiol. A: Chem., 2003, 156, 179-187.
[30]
Valtierra, J.M.; Servín, J.G.; Reyes, C.F.; Calixto, S. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO2 particles deposited on glass microrods. Appl. Surf. Sci., 2006, 252, 3600-3608.
[31]
Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl. Catal. A Gen., 2013, 462-463, 178-195.
[32]
Seabra, M.P.; Pires, R.R.; Labrincha, J.A. Ceramic tiles for photodegradation of Orange II solutions. Chem. Eng. J., 2011, 171, 692-702.
[33]
Konstantinou, I.K.; Sakellarides, T.M.; Sakkas, V.A.; Albanis, T.A. Photocatalytic degradation of selected s-Triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ. Sci. Technol., 2001, 35(2), 398-405.
[34]
Matsumoto, R.; Nishizawa, Y.; Kataoka, N.; Tanaka, H.; Yoshikawa, H.; Tanuma, S.; Yoshihara, K. Reproducibility of XPS analysis for film thickness of SiO2/Si by active Shirley method. J. Electron. Spectrosc., 2015, 207, 55-59.
[35]
Kim, S.; Choi, W. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path. J. Phys. Chem. B, 2005, 109(11), 5143-5149.
[36]
Tojo, S.; Tachikawa, T.; Fujitsuka, M.; Majima, T. Iodine-doped TiO2 photocatalysts: Correlation between band structure and mechanism. J. Phys. Chem. C, 2008, 112, 14948-14954.
[37]
Yin, W.J.; Chen, S.; Yang, J.H.; Gong, X.G.; Yan, X.F.; Wei, S.H. Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction. Appl. Phys. Lett., 2010, 96, 221901.
[38]
Siuzdak, K.; Szkoda, M.; Sawczak, M.; Oleksiak, A.L. Novel nitrogen precursors for electrochemically driven doping of titania nanotubes exhibiting enhanced photoactivity. New J. Chem., 2015, 39, 2741-2751.
[39]
Yu, J.; Yu, H.; Cheng, B.; Zhou, M.H.; Zhao, X.J. Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. J. Mol. Catal. A-Chem., 2006, 253, 112-118.
[40]
Jiang, X.; Yang, L.; Liu, P.; Li, X.; Shen, J. The photocatalytic and antibacterial activities of neodymium and iodine doped TiO2 nanoparticles. Colloid. Surf. B, 2010, 79, 69-74.
[41]
Song, X.L.; Li, Y.Y.; Wei, Z.D.; Ye, S.Y.; Dionysiou, D.D. Synthesis of BiVO4 /P25 composites for the photocatalytic degradation of ethylene under visible light. Chem. Eng. J., 2017, 314, 443-452.
[42]
Babeleon, P.; Dequiedt, A.S.; Mosefa-Sba, H.; Bourgeoisb, S.; Sibillot, P.; Sacilotti, M. SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films, 1998, 322, 63-67.
[43]
Hong, X.T.; Wang, Z.P.; Cai, W.M.; Lu, F.; Zhang, J.; Yang, Y.Z.; Ma, N.; Liu, Y.J. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater., 2005, 17(6), 1548-1552.
[44]
Song, S.; Tu, J.J.; He, Z.Q.; Hong, F.Y.; Liu, W.P.; Chen, J.M. Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination. Appl. Catal. A, 2010, 378, 169-174.
[45]
Zhang, Q.; Ye, S.Y.; Chen, X.M.; Song, X.L.; Li, L.Q.; Huang, X. Photocatalytic degradation of ethylene using titanium dioxide nanotube arrays with Ag and reduced graphene oxide irradiated by γ-ray radiolysis. Appl. Catal. B-Environ., 2017, 203, 673-683.
[46]
Luo, X.H.; Wang, R.; Wang, L.; Wang, Y.; Chen, Z.X. Structure elucidation and toxicity analyses of the degradation products of aflatoxin B1 by aqueous ozone. Food Control, 2013, 31, 331-336.
[47]
Wang, F.; Xie, F.; Xue, X.F.; Wang, Z.D.; Fan, B.; Ha, Y.M. Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B1 in methanol–water solution. J. Hazard. Mater., 2011, 192, 1192-1202.