[1]
Zhang, M.H.; Man, H.T.; Zhao, X.D.; Dong, N.; Ma, S.L. Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials. Biomed. Rep., 2014, 2, 41-52. [Review].
[2]
Sengupta, S.; Jordan, V.C. Selective estrogen modulators as an anticancer tool: mechanisms of efficiency and resistance. Adv. Exp. Med. Biol., 2008, 630, 206-219.
[3]
Martinkovich, S.; Shah, D.; Planey, S.L.; Arnott, J.A. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin. Interv. Aging, 2014, 9, 1437-1452.
[4]
Jordan, V.C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. receptor interactions. J. Med. Chem., 2003, 46, 883-908.
[5]
Jordan, V.C. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov., 2003, 2, 205-213.
[6]
Baneshi, M.R.; Warner, P.; Anderson, N.; Edwards, J.; Cooke, T.G.; Bartlett, J.M.S. Tamoxifen resistance in early breast cancer: statistical modelling of tissue markers to improve risk prediction. Br. J. Cancer, 2010, 102, 1503-1510.
[7]
Júnior, J.K.; Kulak, C.A.M.; Taylor, H.S. SERMs in the prevention and treatment of postmenopausal osteoporosis: an update. Arq. Bras. Endocrinol. Metabol, 2010, 52, 200-205.
[8]
Neven, P.; Vergote, I. Tamoxifen, screening and new oestrogen receptor modulators. Best Pract. Res. Clin. Obstet. Gynaecol., 2001, 15, 365-380.
[9]
Jordan, V.C. Biochemical pharmacology of antiestrogen action. Pharmacol. Rev., 1984, 36, 245-276.
[10]
Lippman, M.E.; Bolan, G. Oestrogen-responsive human breast cancer in long term tissue culture. Nature, 1975, 256, 592-593.
[11]
Catherino, W.H.; Jordan, V.C. Stereoisomers and drug toxicity. The value of single stereoisomer therapy. Drug Saf., 1993, 8, 381-397.
[12]
Dorssers, L.C.; Van der Flier, S.; Brinkman, A.; van Agthoven, T.; Veldscholte, J.; Berns, E.M.; Klijn, J.G.; Beex, L.V.; Foekens, J.A. Tamoxifen resistance in breast cancer: elucidating mechanisms. Drugs, 2001, 61, 1721-1733.
[13]
Fabian, C.J. Clinical utilities of aromatase inhibitors in breast cancer. Int. J. Clin. Pract., 2007, 61, 2051-2063.
[14]
Smith, I.E.; Dowsett, M. Aromatase inhibitors in breast cancer. N. Engl. J. Med., 2003, 348, 2431-2442.
[15]
Geisler, J.; King, N.; Anker, G.; Ornati, G.; Di Salle, E.; Lønning, P.E.; Dowsett, M. In vivo inhibition of aromatization by exemestane, a novel irreversible aromatase inhibitor, in postmenopausal breast cancer patients. Clin. Cancer Res., 1998, 4, 2089-2093.
[16]
Geisler, J. Differences between the non-steroidal aromatase inhibitors anastrozole and letrozole – of clinical importance? Br. J. Cancer, 2011, 104, 1059-1066.
[17]
Gonnelli, S.; Petrioli, R. Aromatase inhibitors, efficacy and metabolic risk in the treatment of postmenopausal women with early breast cancer. Clin. Interv. Aging, 2008, 3, 647-657.
[18]
Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113, 4905-4979.
[19]
Ma, N.; Wang, Y.; Zhao, B.X.; Ye, W.C.; Jiang, S. The application of click chemistry in the synthesis of agents with anticancer activity. Drug Des. Devel. Ther., 2015, 9, 1585-1599.
[20]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8, 1128-1137.
[21]
Zhao, M.; Josephson, L.; Tang, Y.; Weissleder, R. Magnetic Sensors for Protease Assays. Angew. Chem. Int. Ed., 2003, 42, 1375-1378.
[22]
Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E. Magnetic Nanoparticle Design for Medical Applications. Prog. Solid State Chem., 2006, 34, 237-247.
[23]
Patel, D.; Moon, J.Y.; Chang, Y.; Kim, T.J.; Lee, G.H. Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as MRI contrast agent. Colloid Surf. A., 2008, 313-314, 91-94.
[24]
Shokouhimehr, M.; Piao, Y.; Kim, J.; Jang, Y.; Hyeon, T. A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angew. Chem. Int. Ed., 2007, 46, 7039-7043.
[25]
Murty, M.S.R.; Rao, K.M.; Rao, B.R.; Babu, N.J.; Kumar, B.S.; Prakasham, R.S. Synth. Commun., 2014, 44, 2724-2737.
[26]
Anand, N.; Reddy, K.H.P.; Satyanarayana, T.; Rao, K.S.R.; Burri, D.R. A magnetically recoverable γ-Fe2O3 nanocatalyst for the synthesis of 2-phenylquinazolines under solvent-free conditions. Catal. Sci. Technol., 2012, 2, 570-574.
[27]
Shi, F.; Tse, M.K.; Pohl, M.M.; Brückner, A.; Zhang, S.; Beller, M. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed., 2007, 46, 8866-8868.
[28]
Fingerhut, A.; Serdyuk, O.V.; Tsogoeva, S.B. Non-heme iron catalysts for epoxidation and aziridination reactions of challenging terminal alkenes: towards sustainability. Green Chem., 2015, 17, 2042-2058.
[29]
Jordan, V.C. estrogen receptor mutations found in breast cancer metastases integrated with the molecular pharmacology of selective ER modulators. J. Natl. Cancer Inst., 1998, 90, 967-971.
[30]
Murty, M.S.R.; Katiki, M.R.; Rao, B.R.; Narayanan, S.S.; Anto, R.J.; Buddana, S.K.; Prakasham, R.S.; Devi, B.L.A.P.; Prasad, R.B.N. An efficient nonconventional glycerol-based solid acid catalyzed synthesis and biological evaluation of phosphonate conjugates of 1,2,4-triazole thiones. Lett. Drug Des. Discov., 2016, 13, 968-981.
[31]
Murty, M.S.R.; Katiki, M.R.; Kommula, D. Multicomponent click synthesis of β-hydroxy/benzyl 1,2,3- triazoles catalyzed by magnetically recyclable nano iron oxide in water. Can. Chem. Trans., 2016, 4, 47-61.
[32]
Murty, M.S.R.; Rao, K.M.; Babu, N.J.; Srujana, G.; Sowjanya, P.; Jain, N.; Kumar, B.S.; Prakasham, R.S. Synthesis and biological evaluation of novel tamoxifen-1,2,4-triazole conjugates. Mol. Divers., 2016, 20, 687-703.
[33]
Dileep, K.; Murty, M.S.R. Synthesis of benzimidazoles/benzothiazoles by using recyclable, magnetically separable nano-Fe2O3 in aqueous medium. J. Iran. Chem. Soc., 2017, 14, 1665-1671.
[34]
Bedford, G.R.; Richardson, D.N. Preparation and Identification of cis and trans Isomers of a Substituted Triarylethylene. Nature, 1966, 212, 733-734.
[35]
Kumaraswamy, G.; Ankamma, K.; Pitchaiah, A. Tandem epoxide or aziridine ring opening by azide/copper catalyzed [3+2] cycloaddition: Efficient synthesis of 1,2,3-triazolo β-hydroxy or β-tosylamino functionality motif. J. Org. Chem., 2007, 72, 9822-9825.
[36]
Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent synthesis of 1,2,3‐triazoles in water catalyzed by copper nanoparticles on activated carbon. Adv. Synth. Catal., 2010, 352, 3208-3214.
[37]
Katzenellenbogen, B.S.; Norman, M.J.; Eckert, R.L.; Peltz, S.W.; Mangel, W.F. Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res., 1984, 44, 112-119.