[1]
Kumara Swamy, K.C.; Bhuvan Kumar, N.N.; Balaraman, E.; Pavan Kumar, K.V.P. Mitsunobu and related reactions: Advances and applications. Chem. Rev., 2009, 109, 2551-2651.
[2]
Mitsunobu, O.; Yamada, M. Preparation of esters of carboxylic and phosphoric acid via quaternary phosphonium salts. Bull. Chem. Soc. Jpn., 1967, 40, 2380-2382.
[3]
Mitsunobu, O.; Yamada, M.; Mukaiyama, T. Preparation of esters of phosphoric acid by the reaction of trivalent phosphorus compounds with diethyl azodicarboxylate in the presence of alcohols. Bull. Chem. Soc. Jpn., 1967, 40, 935-939.
[4]
Mitsunobu, O.; Kato, K.; Kakese, F.A. Novel method for the preparation of carbodiimides. Tetrahedron Lett., 1969, 10, 2473-2475.
[5]
Mitsunobu, O.; Kato, K.; Tomari, M. Preparation of carbodiimides by the reaction of thioureas with diethyl azodicarboxylate. Tetrahedron, 1970, 26, 5731-5736.
[6]
Kato, K.; Mitsunobu, O. Oxidation of mercaptans with diethyl azodicarboxylate and trivalent phosphorus compounds. J. Org. Chem., 1970, 35, 4227-4229.
[7]
Mitsunobu, O.; Eguchi, M. Preparation of carboxylic esters and phosphoric esters by the activation of alcohols. Bull. Chem. Soc. Jpn., 1971, 44, 3427-3430.
[8]
Mitsunobu, O.; Kato, K.; Wada, M. Formation of ketenimines by the reaction of thioamides with diethyl azodicarboxylate and triphenylphosphine. Bull. Chem. Soc. Jpn., 1971, 44, 1362-1364.
[9]
Mitsunobu, O.; Kimura, J.; Fujisawa, Y. Studies on nucleosides and nucleotides. II. Selective acylation of 5′-hydroxyl group of thymidine. Bull. Chem. Soc. Jpn., 1972, 45, 245-247.
[10]
Mitsunobu, O.; Wada, M.; Sano, T. Stereo specific and stereo selective reactions. I. Preparation of amines from alcohols. J. Am. Chem. Soc., 1972, 94, 697-698.
[11]
Wada, M.; Sano, T.; Mitsunobu, O. Stereospecific and stereo selective reactions. II. Preparation of esters of N-phthaloyl-α-amino acid from esters of α-hydroxy acid. Bull. Chem. Soc. Jpn., 1973, 46, 2833-2835.
[12]
Wada, M.; Mitsunobu, O. Intermolecular dehydration between alcohols and active hydrogen compounds by means of diethyl azodicarboxylate and triphenylphosphine. Tetrahedron Lett., 1972, 13, 1279-1282.
[13]
Kurihara, T.; Nakajima, Y.; Mitsunobu, O. Synthesis of lactones and cycloalkanes. Cyclization of ω-hydroxy acids and ethyl α-cyano-ω-hydroxycarboxylates. Tetrahedron Lett., 1976, 17, 2455-2458.
[14]
Mitsunobu, O.; Kimura, J.; Iiizumi, K.; Yanagida, N. Stereoselective and stereospecific reactions. III. Benzoylation, cyclization, and epimerization of diols. Bull. Chem. Soc. Jpn., 1976, 49, 510-513.
[15]
Kurihara, T.; Sugizaki, M.; Kime, I.; Wada, M.; Mitsunobu, O. Stereospecific and stereoselective reactions. V. Alkylation of active methylene compounds by the use of alcohols, diethyl azodicarboxylate, and triphenylphosphine. Bull. Chem. Soc. Jpn., 1981, 54, 2107-2112.
[16]
Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis, 1981, 1, 1-28.
[17]
Castro, B. Replacement of alcoholic hydroxy groups by halogens and other nucleophiles via oxyphosphonium intermediates. Org. React., 1983, 29, 1-162.
[18]
Mitsunobu, O. Comprehensive Organic Synthesis. Trost, B.M.,
Fleming, I., Eds.; Pergamon: New York, 1991, 6, pp. 65.
[19]
Hughes, D.L. The Mitsunobu Reaction. Org. React., 1992, 42, 335-656.
[20]
Jenkins, I.D.; Mitsunobu, O. Encyclopedia of Reagents for Organic
Synthesis; Paquette, L.A., Ed.; Wiley: New York, 1995. 8, 5379-
5390.
[21]
Hughes, D.L. Progress in the Mitsunobu reaction. A Review. Org. Prep. Proced. Int., 1996, 28, 127-164.
[22]
Dodge, J.A.; Jones, S.A. Advances in the Mitsunobu reaction for the stereochemical inversion of hindered secondary alcohols. Recent Res. Dev. Org. Chem., 1997, 1, 273-283.
[23]
Simon, C.; Hosztafi, S.; Makleit, S. Application of the Mitsunobu reaction in the field of alkaloids. J. Heterocycl. Chem., 1997, 34, 349-365.
[24]
Wisniewski, K.; Kołdziejczyk, A.S.; Falkiewicz, B. Applications of the Mitsunobu reaction in peptide chemistry. J. Pept. Sci., 1998, 4, 1-14.
[25]
Wisniewski, K.; Kolodziejczyk, A.S.; Falkiewiez, B. Uses of Mitsunobu reaction in amino acid chemistry. Wiad. Chem., 1998, 52, 243-267.
[26]
Herr, R.J. A whirlwind tour of current Mitsunobu chemistry. Technical Report. Albany Molecular Research. Inc., 1999, 3, 1-36.
[27]
Ito, S. Development of new synthetic reagents in Mitsunobu-type reaction. Yakugaku Zasshi, 2001, 121, 567-583.
[28]
Janzi, K.A. Mitsunobu reaction; Wikipedia, 2001.
[29]
Jenkins, I.D.; Mitsunobu, O. Electronic Encyclopedia of Reagents for Organic Synthesis; Paquette, L.A., Ed.; John Wiley & Sons, Ltd.: New York, 2001.
[30]
Lawrence, S. The Mitsunobu reaction. Pharma Chem., 2002, 1, 12-14.
[31]
Paul, N.M.; Gabriel, C.J.; Parquette, J.R. Developments in fluorous Mitsunobu chemistry. Chemtracts, 2002, 15, 617-622.
[32]
Valentine, D.H., Jr; Hillhouse, J.H. Alkyl phosphines as reagents and catalysts in organic synthesis. Synthesis, 2003, 317-334.
[33]
Nam, N-H.; Sardari, S.; Parang, K. Reactions of solid-supported reagents and solid supports with alcohols and phenols through their hydroxyl functional group. J. Comb. Chem., 2003, 5, 479-546.
[34]
Nune, S.K. Mitsunobu reagent [triphenyl-phosphine (TPP) and
diethyl azodi-carboxylate (DEAD)/diisopropyl azodicarboxylate
(DIAD)]. Synlett., 2003, 1221-1222.
[35]
Dembinski, R. Recent advances in the Mitsunobu reaction: Modified reagents and the quest for chromatography‐free separation. Eur. J. Org. Chem., 2004, 2763-2772.
[36]
Tsunoda, T.; Kaku, H.; Ito, S. New Mitsunobu reagents. TCIMAIL, 2004, 123, 2.
[37]
Dandapani, S.; Curran, D.P. Separation‐friendly Mitsunobu reactions: A microcosm of recent developments in separation strategies. Chem. Euro. J, 2004, 10, 3130-3138.
[38]
Ren, X-F.; Xu, J-L.; Chen, S-H. Recent progress of Mitsunobu reaction. Chin. J. Org. Chem., 2006, 26, 454-461.
[39]
Parenty, A.; Moreau, X.; Campagne, J-M. Macrolactonizations in the total synthesis of natural products. Chem. Rev., 2006, 106, 911-939.
[40]
But, T.Y.S.; Toy, P.H. The Mitsunobu reaction: Origin, mechanism, improvements, and applications. Chem. Asian J., 2007, 2, 1340-1355.
[41]
Otera, J.; Nishikido, J. Reaction of alcohols with carboxylic acids
and their derivatives in esterification: Methods, reactions, and applications,
second edition, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany , 2009.
[42]
Fletcher, S. The Mitsunobu reaction in the 21st century. Org. Chem. Front., 2015, 2, 739-752.
[43]
Reynolds, A.J.; Kassiou, M. Recent advances in the Mitsunobu reaction: Modifications and applications to biologically active molecules. Curr. Org. Chem., 2009, 13(16), 1610-1632.
[44]
Zhirov, A.M.; Aksenov, A.V. Azodicarboxylates: Synthesis and functionalization of organic compounds. Russ. Chem. Rev., 2014, 83, 502-522.
[45]
Kitahara, K.; Toma, T.; Shimokawa, J.; Fukuyama, T.O-T.B.S. -N-tosylhydroxylamine: A reagent for facile conversion of alcohols to oximes. Org. Lett., 2008, 10, 2259-2261.
[46]
Keith, J.M.; Gomez, L. Exploration of the Mitsunobu reaction with tosyl- and Boc- hydrazones as nucleophilic agents. J. Org. Chem., 2006, 71, 7113-7116.
[47]
Myers, A.G.; Movassaghi, M.; Zheng, B. Single-step process for the reductive deoxygenation of unhindered alcohols. J. Am. Chem. Soc., 1997, 119, 8572-8573.
[48]
Sen, S.E.; Roach, S.L. A convenient two-step procedure for the synthesis of substituted allylic amines from allylic alcohols. Synthesis, 1995, 756-758.
[49]
Green, J.E.; Bender, D.M.; Jackson, S.; O’Donell, M.J.; McCarthy, J.R. Mitsunobu approach to the synthesis of optically α, α-disubstituted amino acids. Org. Lett., 2009, 11, 807-810.
[50]
Fletcher, S.; Shahani, V.M.; Gunning, P.T. Facile and efficient access to 2, 6, 9-tri-substituted purines through sequential N9, N2 Mitsunobu reactions. Tetrahedron Lett., 2009, 50, 4258-4261.
[51]
Dai, L-Y.; Shi, Q-L.; Zhang, J.; Wang, X-Z.; Chen, Y-Q. Accelerated effect on Mitsunobu reaction via bis-N-tert-butoxy-carbonylation protection of 2-amino-6-chloropurine and its application in a novel synthesis of penciclovir. J. Zhejiang Univ. Sci. A, 2013, 14(10), 760-766.
[52]
Fletcher, S. Regioselective alkylation of the exocyclic nitrogen of adenine and adenosine by the Mitsunobu reaction. Tetrahedron Lett., 2010, 51, 2948-2950.
[53]
Quezada, E.; Vina, D.; Delogu, G.; Borges, F.; Santana, L.; Uriarte, E. Synthesis of carbocyclic pyrimidine nucleosides using the Mitsunobu reaction: O2-vs. N1-alkylation. Helv. Chim. Acta, 2010, 93, 309-313.
[54]
Panday, S.K.; Pathak, M.B.; Prasad, J. An efficient and straight forward strategy for the synthesis of enantiomerically pure (S)-1-benzyl-5(alkyl/aryl amino) methyl- pyrrolidin-2-ones. Indian J. Chem., 2015, 54B, 936-939.
[55]
Panday, S.K.; Prasad, J.; Pathak, M.B. Straightforward and facile approach toward the n-derivatization of pyroglutamates through Mitsunobu reaction: Synthesis of N-alkyl/N-acyl pyroglutamates. Synth. Commun., 2011, 41, 3654-3661.
[56]
Bates, R.W.; Lim, C.J. Synthesis of two nuphar alkaloids by allenic hydroxylamine cyclisation. Synlett, 2010, 866-868.
[57]
Lepore, S.D.; He, Y. Use of sonication for the coupling of sterically hindered substrates in the phenolic Mitsunobu reaction. J. Org. Chem., 2003, 68, 8261-8263.
[58]
Wang, G.; Ella-Menya, J-R.; Martin, M.S.; Yang, H.; Williams, K. Regioselective esterification of vicinal diols on monosaccharide derivatives via Mitsunobu reaction. Org. Lett., 2008, 10, 4203-4206.
[59]
Camp, D.; Harvey, P.J.; Jenkins, I.D. The effect of polarity on the rate of the Mitsunobu esterification reaction. Tetrahedron, 2015, 71, 3932-3938.
[60]
Huang, G.; Schramm, S.; Heilmann, J.; Biedermann, D.; Kren, V.; Decker, M. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins. Beilstein J. Org. Chem., 2016, 12, 662-669.
[61]
Mahdi, K.M.; Abdul-Reda, N.A.; Al-Masoudi, N.A. Exploration of new 3α-pregnenolone ester analogues via Mitsunobu reaction, their anti-HIV activity and molecular modeling study. Eur. J. Chem., 2015, 6, 1-7.
[62]
Chaturvedi, D.; Mishra, N.; Mishra, V. An efficient, one-pot synthesis of S-alkyl thiocarbamates from the corresponding thiols using the Mitsunobu reagent. Synthesis, 2008, 355-357.
[63]
Iranpoor, N.; Firouzabadi, H.; Akhlaghinia, B.; Azadi, R. Conversion of alcohols, thiols, carboxylic acids, trimethylsilyl ethers, and carboxylates to thiocyanates with triphenylphosphine/diethylazo-dicarboxylate/NH4SCN. Synthesis, 2004, 92-96.
[64]
Takacs, J.M.; Xu, Z.; Jiang, X-T.; Leonov, A.P.; Theriot, G.C. Carbon nucleophiles in the Mitsunobu reaction. Mono and dialkylation of bis (2, 2, 2-trifluorethyl) malonates. Org. Lett., 2002, 4, 3843-3845.
[65]
Krohn, K.; Ahmed, I.; John, M.; Letzel, M.C.; Kuck, D. Stereoselective synthesis of benzylated prodelphinidins and their diastereomers with use of the Mitsunobu reaction in the preparation of their gallocatechin precursors. Eur. J. Org. Chem., 2010, 2010, 2544-2554.
[66]
Xu, S.; Shang, J.; Zhang, J.; Tang, Y. Regioselective SN2′ Mitsunobu reaction of Morita-Baylis-Hillman alcohols: A facile and stereoselective synthesis of α-alkylidene-β-hydrazino acid derivatives. Beilstein J. Org. Chem., 2014, 10, 990-995.
[67]
Petit, S.; Azzouz, R.; Fruit, C.; Bischoff, L.; Marsais, F. An efficient protocol for the preparation of pyridinium and imidazolium salts based on the Mitsunobu reaction. Tetrahedron Lett., 2008, 49, 3663-3665.
[68]
Prasad, J.; Pathak, M.B.; Panday, S.K. An efficient and straight forward synthesis of (5S)-1-benzyl-5-(1H-imidazol-1-ylmethyl)-2-pyrrolidinone (MM1): A novel antihypertensive agent. Med. Chem. Res., 2012, 21, 321-324.
[69]
Hagiya, K.; Muramoto, N.; Misaki, T.; Sugimura, T. DMEAD: A new dialkyl azodicarboxylate for the Mitsunobu reaction. Tetrahedron, 2009, 65, 6109-6114.
[70]
Muramoto, N.; Yoshino, K.; Misaki, T.; Sugimura, T. Mitsunobu reaction with 4-(diphenylphosphino) benzoic acid: A separation-friendly bifunctional reagent that serves as both a reductant and a pronucleophile. Synthesis, 2013, 45, 931-935.
[71]
Iranpoor, N.; Firouzabadi, H.; Khalili, D.; Motevalli, S. Easily prepared azopyridines as potent and recyclable reagents for facile esterification reactions. An efficient modified Mitsunobu reaction. J. Org. Chem., 2008, 73, 4882-4887.
[72]
Lipshutz, B.H.; Chung, D.W.; Rich, B.; Corral, R. Simplification of the Mitsunobu Reaction. Di-p-chlorobenzyl azodicarboxylate: A new azodicarboxylate. Org. Lett., 2006, 73, 5069-5072.
[73]
Tsunoda, T.; Yamamiya, Y.; Ito, S. 1,1′-(azodicarbonyl)di-piperidine-tributylphosphine, a new reagent system for Mitsunobu reaction. Tetrahedron Lett., 1993, 34, 1639-1642.
[74]
Yang, J.; Dai, L.; Wang, X.; Di Chen, Y. -p-nitrobenzyl azodicarboxylate (DNAD): An alternative azo-reagent for the Mitsunobu reaction. Tetrahedron, 2011, 67, 1456-1462.
[75]
Iranpoor, N.; Firouzabadi, H.; Khalili, D. 5,5′-Dimethyl-3,3′-azoisoxazole as a new heterogeneous azo reagent for esterification of phenols and selective esterification of benzylic alcohols under Mitsunobu conditions. Org. Biomol. Chem., 2010, 8, 4436-4443.
[76]
Dandapani, S.; Curran, D.P. Fluorous Mitsunobu reagents and reactions. Tetrahedron, 2002, 58, 3855-3864.
[77]
But, T.Y.S.; Toy, P.H. Organocatalytic Mitsunobu reaction. J. Am. Chem. Soc., 2006, 128, 9636-9637.
[78]
Hirose, D.; Gazvoda, M.; Kosmrlj, J.; Taniguchi, T. Advances and mechanistic insight on the catalytic Mitsunobu reaction using recyclable azo reagents. Chem. Sci., 2016, 7, 5148-5159.
[79]
Hirose, D.; Taniguchi, T.; Ishibashi, H. Recyclable Mitsunobu Reagents: Catalytic Mitsunobu reactions with an iron catalyst and atmospheric oxygen. Angew. Chem. Int. Ed., 2013, 52, 4613-4617.
[80]
Hirose, D.; Gazvoda, M.; Kosmrlj, J.; Taniguchi, T. The “fully catalytic system” in Mitsunobu reaction has not been realized yet. Org. Lett., 2016, 18(16), 4036-4039.
[81]
Shimotori, Y.; Aoyama, M.; Miyakoshi, T. Enantioselective synthesis of δ-lactones with lipase-catalyzed resolution and Mitsunobu reaction. Synth. Commun., 2012, 42, 694-704.
[82]
Figlus, M.; Wellaway, N.; Cooper, A.W.J.; Sollis, S.L.; Hartley, R.C. Synthesis of arrays using low molecular weight MPEG-assisted Mitsunobu reaction. ACS Comb. Sci., 2011, 13(3), 280-285.
[83]
Maity, P.K.; Rolfe, A.; Samarakoon, T.B.; Faisal, S.; Kurtz, R.D.; Long, T.R.; Schatz, A.; Flynn, D.L.; Grass, R.N.; Stark, W.J.; Reiser, O.; Hanson, P.R. Monomer-on-Monomer (MoM) Mitsunobu reaction: Facile purification utilizing surface-initiated sequestration. Org. Lett., 2011, 13(1), 8-10.
[84]
Valeur, E.; Roche, D. Efficient, mild, parallel and purification-free synthesis of aryl ethers via the Mitsunobu reaction. Tetrahedron Lett., 2008, 49, 4182-4185.
[85]
Panday, S.K.; Langlois, N. Enantioselective synthesis of (S)-5-aminopiperidin-2-one from (S)-pyroglutaminol. Tetrahedron Lett., 1995, 36, 8205-8208.
[86]
Olofsson, B.; Wijtmans, R.; Somfai, P. Olofsson, B.; Wijtmans, R.; Somfai, P.; Synthesis of N-H vinylaziridines: A comparative study. Tetrahedron, 2002, 58, 5979-5982.
[87]
Samanta, K.; Srivastava, N.; Saha, S.; Panda, G. Inter- and intramolecular Mitsunobu reaction and metal complexation study: Synthesis of S-amino acids derived chiral 1, 2, 3, 4-tetrahydroquinoxaline, benzo-annulated [9]-N3 peraza, [12]-N4 peraza-macrocycles. Org. Biomol. Chem., 2012, 10, 1553-1564.
[88]
Pierrat, P.; Rethore, C.; Muller, T.; Brase, S. Di‐ and dodeca‐Mitsunobu reactions on C60 derivatives: Post‐functionalization of fullerene mono‐ and hexakis‐adducts. Chem. Eur. J., 2009, 15, 11458-11460.
[89]
Tang, X.; Chapman, C.; Whiting, M.; Denton, R. Development of a redox-free Mitsunobu reaction exploiting phosphine oxides as precursors to dioxyphosphoranes. Chem. Commun., 2014, 50, 7340-7343.
[90]
Martin, S.F.; Dodge, J.A. Efficacious modification of the Mitsunobu reaction for inversions of sterically hindered secondary alcohols. Tetrahedron Lett., 1991, 32, 3017-3020.
[91]
Azzouz, R.; Fruit, C.; Bischoff, L.; Marsais, F. A concise synthesis of lentiginosine derivatives using a pyridinium formation via the Mitsunobu reaction. J. Org. Chem., 2008, 73, 1154-1157.
[92]
Berree, F.; Gernigon, N.; Hercouet, A.; Lin, C.H.; Carboni, B.S. N2′ boron‐mediated Mitsunobu reactions - A new one‐pot three‐component synthesis of substituted enamides and enol benzoates. Eur. J. Org. Chem., 2009, 2009, 329-333.
[93]
Hoffman, J.A.; Miller, J.N.; Gardner, M.E.; LePar, D.R.; Pongdee, R. Synthesis of N, N-diethylbenzamides via a nonclassical Mitsunobu reaction. Synth. Commun., 2014, 44(7), 976-980.
[94]
Cassani, C.; Martin-Rapun, R.; Arceo, E.; Bravo, F.; Melchiorre, P. Synthesis of 9-amino(9-deoxy)epi cinchona alkaloids, general chiral organocatalysts for the stereoselective functionalization of carbonyl compounds. Nat. Protoc., 2013, 8, 325-344.