[1]
T.B. Shanker, H.N. Nagamani, D. Antony, and G.S. Punekar, "Case
studies on transformer fault diagnosis using dissolved gas analysis
In:", IEEE PES Asia-Pacific Power and Energy Engineering
Conference (APPEEC). Bangalore, India, 2017, pp. 1-3.
[2]
S.S.M. Ghoneim, and I.B.M. Taha, "A new approach of DGA interpretation technique for transformer fault diagnosis", Int. J. Electr. Power Energy Syst., vol. 81, pp. 265-274, 2016.
[3]
M.C. Niţu, A.M. Aciu, C.I. Nicola, and M. Nicola, "Power
transformer fault diagnosis using fuzzy logic technique based on
dissolved gas analysis and furan analysis In:", International
Conference on Optimization of Electrical and Electronic
Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical
Machines and Power Electronics (ACEMP). Brasov, Romania,
2017, pp. 184-189.
[4]
H. Lin, W.H. Tang, T.Y. Ji, and Q.H. Wu, "A novel approach to
power transformer fault diagnosis based on ontology and Bayesian
network In:", IEEE PES Asia-Pacific Power and Energy
Engineering Conference (APPEEC). Hong Kong, 2014, pp. 1-6.
[5]
S. Li, G. Wu, B. Gao, C. Hao, D. Xin, and X. Yin, "Interpretation of DGA for transformer fault diagnosis with complementary SaE-ELM and arctangent transform", IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 1, pp. 586-595, 2016.
[6]
N. Razmjooy, F.R. Sheykhahmad, and N. Ghadimi, "A hybrid
neural network - world cup optimization algorithm for melanoma
detection Open Medicine (Warsaw, Poland), vol. 13, pp. 9-16,
[Accessed on: 2018]",
[7]
S. Yu, D. Zhao, W. Chen, and H. Hou, "Oil-immersed power transformer internal fault diagnosis research based on probabilistic neural network", Procedia Comput. Sci., vol. 83, pp. 1327-1331, 2016.
[8]
J. Cheng, L. Ai, and Y. Xiong, "Transformer fault diagnosis based on multi-algorithm fusion", Recent Adv. Electr. Electron. Eng., vol. 9, no. 3, pp. 249-254, 2016.
[9]
H. Ebrahimian, S. Barmayoon, M. Mohammadi, and N. Ghadimi, "The price prediction for the energy market based on a new method", Economic Research-Ekonomska Istraživanja, vol. 31, no. 1, pp. 313-337, 2018.
[10]
G. Aghajani, and N. Ghadimi, "Multi-objective energy management in a micro-grid", Energy Rep., vol. 4, pp. 218-225, 2018.
[11]
Y. Luo, Y. Hou, G. Liu, and C. Tang, "Transformer fault diagnosis
method based on QIA optimization BP neural network In:", IEEE
2nd Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC). Chengdu, China, 2017,
pp. 1623-1626.
[12]
W. Mo, T. Kari, H. Wang, L. Luan, and W. Gao, "Power
transformer fault diagnosis using support vector machine and
particle swarm optimization In:", 10th International Symposium on
Computational Intelligence and Design (ISCID). Hangzhou, China,
2017, pp. 511-515.
[13]
J. Dai, H. Song, G. Sheng, and X. Jiang, "Dissolved gas analysis of insulating oil for power transformer fault diagnosis with deep belief network", IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 5, pp. 2828-2835, 2017.
[14]
X. Ji, Y. Zhang, H. Sun, J. Liu, Y. Zhuang, and Q. Lei, "Fault
diagnosis for power transformer using deep learning and softmax
regression", Chinese Automation Congress (CAC). 2017, pp. 2662-
2667.
[15]
B. Mirza, Z. Lin, J. Cao, and X. Lai, "Voting based weighted online
sequential extreme learning machine for imbalance multi-class
classification", IEEE International Symposium on Circuits and
Systems (ISCAS). Lisbon, Portugal, 2015, pp. 565-568.
[16]
H. Zhou, G.B. Huang, Z. Lin, H. Wang, and Y.C. Soh, "Stacked extreme learning machines", IEEE Trans. Cybern., vol. 45, no. 9, pp. 2013-2025, 2015.
[17]
A. Akusok, K.M. Björk, Y. Miche, and A. Lendasse, "High-performance extreme learning machines: A complete toolbox for big data applications", IEEE Access, vol. 3, pp. 1011-1025, 2015.
[18]
G. Huang, G-B. Huang, S. Song, and K. You, "Trends in extreme learning machines: A review", Neural Netw., vol. 61, pp. 32-48, 2015.
[19]
H. Leng, X. Li, J. Zhu, H. Tang, Z. Zhang, and N. Ghadimi, "A new wind power prediction method based on ridge let transforms, hybrid feature selection and closed-loop forecasting", Adv. Eng. Inform., vol. 36, pp. 20-30, 2018.
[20]
W. Zong, G-B. Huang, and Y. Chen, "Weighted extreme learning machine for imbalance learning", Neurocomputing, vol. 101, pp. 229-242, 2013.
[21]
H. Khodaei, M. Hajiali, A. Darvishan, M. Sepehr, and N. Ghadimi, "Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming", Appl. Therm. Eng., vol. 137, pp. 395-405, 2018.
[22]
M. Li, and X. Zhang, "A modified more rapid sequential extreme
learning machine In:", 8th International Conference on
Computational Intelligence and Communication Networks (CICN). Tehri, India, 2016, pp. 336-340.
[23]
Z. Wu, H. Tang, and S. He, "J.gao, X.Chen, S.To, Y.Li, and Z. Yang. “Fast dynamic hysteresis modeling using a regularized online sequential extreme learning machine with forgetting property", Int. J. Adv. Manuf. Technol., vol. 94, no. 9-12, pp. 3473-3484, 2017.
[24]
S. Yu, D. Zhao, W. Chen, and H. Hou, "Oil-immersed power transformer internal fault diagnosis research based on probabilistic neural network", Procedia Comput. Sci., vol. 83, pp. 1327-1331, 2016.
[25]
A. Maliha, R. Yusof, and A. Madani, "Online sequential-extreme
learning machine based detector on training-learning-detection
framework In:", 10th Asian Control Conference (ASCC). Kota
Kinabalu, Malaysia, 2015, pp. 1-5.